hh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Rosberg, Felix
    Halmstad University, School of Information Technology. Engage Studios, Gothenburg, Sweden.
    Anonymizing Faces without Destroying Information2024Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Anonymization is a broad term. Meaning that personal data, or rather data that identifies a person, is redacted or obscured. In the context of video and image data, the most palpable information is the face. Faces barely change compared to other aspect of a person, such as cloths, and we as people already have a strong sense of recognizing faces. Computers are also adroit at recognizing faces, with facial recognition models being exceptionally powerful at identifying and comparing faces. Therefore it is generally considered important to obscure the faces in video and image when aiming for keeping it anonymized. Traditionally this is simply done through blurring or masking. But this de- stroys useful information such as eye gaze, pose, expression and the fact that it is a face. This is an especial issue, as today our society is data-driven in many aspects. One obvious such aspect is autonomous driving and driver monitoring, where necessary algorithms such as object-detectors rely on deep learning to function. Due to the data hunger of deep learning in conjunction with society’s call for privacy and integrity through regulations such as the General Data Protection Regularization (GDPR), anonymization that preserve useful information becomes important.

    This Thesis investigates the potential and possible limitation of anonymizing faces without destroying the aforementioned useful information. The base approach to achieve this is through face swapping and face manipulation, where the current research focus on changing the face (or identity) while keeping the original attribute information. All while being incorporated and consistent in an image and/or video. Specifically, will this Thesis demonstrate how target-oriented and subject-agnostic face swapping methodologies can be utilized for realistic anonymization that preserves attributes. Thru this, this Thesis points out several approaches that is: 1) controllable, meaning the proposed models do not naively changes the identity. Meaning that what kind of change of identity and magnitude is adjustable, thus also tunable to guarantee anonymization. 2) subject-agnostic, meaning that the models can handle any identity. 3) fast, meaning that the models is able to run efficiently. Thus having the potential of running in real-time. The end product consist of an anonymizer that achieved state-of-the-art performance on identity transfer, pose retention and expression retention while providing a realism.

    Apart of identity manipulation, the Thesis demonstrate potential security issues. Specifically reconstruction attacks, where a bad-actor model learns convolutional traces/patterns in the anonymized images in such a way that it is able to completely reconstruct the original identity. The bad-actor networks is able to do this with simple black-box access of the anonymization model by constructing a pair-wise dataset of unanonymized and anonymized faces. To alleviate this issue, different defense measures that disrupts the traces in the anonymized image was investigated. The main take away from this, is that naively using what qualitatively looks convincing of hiding an identity is not necessary the case at all. Making robust quantitative evaluations important.

    Download full text (pdf)
    Anonymizing Faces without Destroying Information
    Download (jpg)
    presentationsbild
  • 2.
    Rosberg, Felix
    et al.
    Berge Consulting, Gothenburg, Sweden.
    Englund, Cristofer
    Halmstad University, School of Information Technology. RISE Research Institutes of Sweden, Gothenburg, Sweden.
    Torstensson, Martin
    RISE Research Institutes of Sweden, Gothenburg, Sweden.
    Duran, Boris
    RISE Research Institutes of Sweden, Gothenburg, Sweden.
    Towards Privacy Aware Data collection in Traffic: A Proposed Method for Measuring Facial Anonymity2021In: Fast-Zero 2021 Proceedings: 6th International Symposium on Future Active Safety Technology toward Zero Accidents, Chiyoda: JSAE , 2021Conference paper (Refereed)
    Abstract [en]

    Developing a machine learning-based vehicular safety system that is effective and generalizes well, capable of coping with all the different scenarios in real traffic is a challenge that requires large amounts of data. Especially visual data for when you want an autonomous vehicle to make decisions based on peoples’ possible intent revealed by the facial expression and eye gaze of nearby pedestrians. The problem with collecting this kind of data is the privacy issues and conflict with current laws like General Data Protection Regulation (GDPR). To deal with this problem we can anonymise faces with current identity and face swapping techniques. To evaluate the performance and interpretation of the anonymization process, there is a need for a metric to measure how well these faces are anonymized that takes identity leakage into consideration. To our knowledge, there is currently no such investigation for this problem. However, our method is based on current facial recognition methods and how recent face swapping work determines identity transfer performance. Our suggestion is to utilize state-of-the-art identity encoders like FaceNet and ArcFace to make use of the embedding vectors to measure anonymity. We provide qualitative results that show the applicability of publicly available identity encoders for measuring anonymity. We further strengthen the applicability of how these encoders behave on the VGGFace2 dataset compared to samples that have had their identity changed by Faceshifter, along with a survey regarding the anonymization procedure to pinpoint how strong facial anonymization is compared the vector distance measurements.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf