hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Network Load Adaptation for Collective Perception in V2X Communications
Technische Hochschule Ingolstadt, CARISSMA, Ingolstadt, Germany.ORCID iD: 0000-0001-6238-1628
Technische Hochschule Ingolstadt, CARISSMA, Ingolstadt, Germany.
2019 (English)In: 2019 Conference Proceedings: 8th IEEE International Conference on Connected Vehicles and Expo, ICCVE, Piscataway: IEEE, 2019, article id 8964988Conference paper, Published paper (Refereed)
Abstract [en]

Collective perception uses V2X communications to increase the perception capabilities of vehicles. Relying on the perceived data from their local sensors, nodes exchange information about the objects they detect in their surroundings. An object can be anything significant for the nodes' safety, e.g., obstacles on the road, other vehicles or pedestrians. The amount of data generated by each node is determined by the number of perceived objects and the generation frequency of the messages carrying the detected objects. Considering the limited bandwidth of the wireless channel, the data load generated by collective perception can easily exceed the channel capacity. In this paper, we investigate three schemes that filter the number of objects in the messages and thereby adjust the network load in order to optimize the transmission of perceived objects. Our simulation-based performance evaluation indicates that the use of filtering is an effective approach to improve network-related performance metrics, whereas the expected impairment of the perception quality is rather small. The comparison of the filtering algorithms provide insights into the tradeoff between network-related metrics and perception quality. ©2019 by IEEE

Place, publisher, year, edition, pages
Piscataway: IEEE, 2019. article id 8964988
Keywords [en]
V2X communications, collective perception, object filtering
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:hh:diva-50442DOI: 10.1109/ICCVE45908.2019.8964988ISI: 000539640300018Scopus ID: 2-s2.0-85079332451ISBN: 978-1-7281-0075-3 (print)OAI: oai:DiVA.org:hh-50442DiVA, id: diva2:1757130
Conference
The 8th International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria, 4-8 November 2019
Note

Funding Agency: German Research Foundation (DFG)

Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2025-10-01Bibliographically approved
In thesis
1. Sensor Data Sharing in V2X Communications: Protocol Design and Performance Optimization of Collective Perception
Open this publication in new window or tab >>Sensor Data Sharing in V2X Communications: Protocol Design and Performance Optimization of Collective Perception
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sensor data sharing involves exchanging sensor data among multiple devices, systems, or platforms through various means, such as wired or wireless communication, cloud storage, and distributed computing. In Vehicle-to-Everything (V2X) communication, sensor data sharing is known as Collective Perception (CP). V2X Collective Perception is the principle of exchanging sensor data among V2X-capable stations, such as vehicles, vulnerable road users, or roadside units, by exchanging lists of perceived objects in the allocated 5.9 GHz frequency band for road safety and traffic efficiency. An object can be anything relevant to traffic safety and is described using its characteristics such as position, heading, and velocity. Objects are detected thanks to sensors such as cameras, LiDARs, and radars mounted on V2X stations. This thesis investigates the message generation rule for CP, specifically how often and with which objects a Collective Perception Message (CPM) should be generated for transmission. The contained studies focus on the challenges posed by the limited bandwidth available in the 5.9 GHz channel against the object selection for inclusion in CPMs. In the first part of the realized studies, the protocol design and the requirements of CP are comprehended from the network and application-related aspects, concluding that the process of filtering objects is necessary to control the channel usage of CP. Moreover, results show that object filtering is only beneficial in high-traffic density scenarios and should not be applied when channel resources are plenty available. In the second part, methods are developed and assessed to adapt the object filtering mechanism to the available channel resources and control information redundancy, i.e., controlling the number of vehicles transmitting updates about the same objects. Through a combination of theoretical analysis, large-scale simulations, and experimental evaluation, this thesis provides a better understanding of the requirements of CP for object filtering and shows the benefits of a developed novel algorithm to adapt object filtering to the available channel resources. Additionally, it elaborates on new metrics and provides a requirements analysis and performance assessment of selected information redundancy reduction techniques. Finally, the results show that combining both approaches enables efficient control of information redundancy while allowing efficient channel resource usage.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2023. p. 43
Series
Halmstad University Dissertations ; 97
Keywords
V2X, sensor data sharing, vehicular communications, Collective Perception, data congestion, Decentralized Congestion Control
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-50463 (URN)978-91-89587-06-9 (ISBN)978-91-89587-07-6 (ISBN)
Public defence
2023-06-09, Wigforssalen, Kristian IV:s väg 3, Halmstad, 13:15 (English)
Opponent
Supervisors
Projects
KOALA2 under number 273374642 within the priority program Cooperatively Interacting Automobiles (CoIn-Car, SPP 1835).
Available from: 2023-05-23 Created: 2023-05-18 Last updated: 2025-10-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Delooz, Quentin

Search in DiVA

By author/editor
Delooz, Quentin
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf