Non-coding RNAs (ncRNAs) play an important role in revealing the mechanism of human disease for anti-tumor and anti-virus substances. Detecting subcellular locations of ncRNAs is a necessary way to study ncRNA. Traditional biochemical methods are time-consuming and labor-intensive, and computational-based methods can help detect the location of ncRNAs on a large scale. However, many models did not consider the correlation information among multiple subcellular localizations of ncRNAs. This study proposes a radial basis function neural network based on shared subspace learning (RBFNN-SSL), which extract shared structures in multi-labels. To evaluate performance, our classifier is tested on three ncRNA datasets. Our model achieves better performance in experimental results. © 2022 The Author(s)
This work is supported in part by the National Natural Science Foundation of China (NSFC 62172076, 62172296 and 61902271), China Postdoctoral Science Foundation (No. 2022T150095) and the Municipal Government of Quzhou (Grant Number 2021D004).