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Abstract

Data-driven methods have been gaining increasing attention; however, along
with the benefits they offer, they also present several challenges, particularly
concerning data availability, accessibility, and heterogeneity, the three fac-
tors that have shaped the development of this thesis.

Data availability is the primary consideration when employing data-driven
methodologies. Suppose we consider a system for which we aim to develop a
Machine Learning (ML) model. Gathering labeled samples, particularly in the
context of real-world problem-solving, consistently poses challenges. While
collecting raw data may be feasible in certain situations, the process of label-
ing them is often difficult, leading to a shortage of labeled data. However,
historical (outdated) data or labeled data may occasionally be available from
different yet related systems.

A feasible approach would be to leverage data from different but related
sources to assist in situations in which data is scarce. The challenge with
this approach is that data collected from various sources may exhibit statis-
tical differences even if they have the same features, i.e., data heterogeneity.
Data heterogeneity impacts the performance of ML models. This issue arises
because conventional machine learning algorithms assume what’s known as
the IID (Independently and Identically Distributed) assumption; training and
test data come from the same underlying distribution and are independent and
identically sampled. The IID assumption may not hold when data comes from
different sources and can result in a trained model performing less effectively
when used in another system or context. In such situations, Domain Adapta-
tion (DA) is a solution.

DA enhances the performance of ML models by minimizing the distri-
bution distance between samples originating from diverse resources. Several
factors come into play within the DA context, each necessitating distinct DA
methods.

In this thesis, we conduct an investigation and propose DA methods while
considering various factors, including the number of domains involved, the
quantity of data available (both labeled and unlabeled) within these domains,
the task at hand (classification or regression), and the nature of statistical het-
erogeneity among samples from different domains, such as covariate shift or
concept shift.
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It is crucial to emphasize that DA techniques work by assuming that we
access the data from different resources. Data may be owned by different data
owners, and data owners are willing to share their data. This data accessibility
enables us to adapt data and optimize models accordingly. However, privacy
concerns become a significant issue when addressing real-world problems, for
example, where the data owners are from industry sectors. These privacy con-
siderations necessitate the development of privacy-preserving techniques, such
as Federated Learning (FL).

FL is a privacy-preserving machine learning technique that enables differ-
ent data owners to collaborate without sharing raw data samples. Instead, they
share their ML models or model updates. Through this collaborative process,
a global machine learning model is constructed, which can generalize and per-
form well across all participating domains. This approach addresses privacy
concerns by keeping individual data localized while benefiting from collective
knowledge to improve the global model. Among the most widely accepted FL
methods is Federated Averaging (FedAvg). In this method, all clients connect
with a central server. The server then computes the global model by aggregat-
ing the local models from each client, typically by calculating their average.

Similar to DA, FL encounters issues when data from different domains
exhibit statistical differences, i.e., heterogeneity, that can negatively affect the
performance of the global model. A specialized branch known as Hetero-
geneous FL has emerged to tackle this situation. This thesis, alongside DA,
considers the heterogeneous FL problem.

This thesis examines FL scenarios where all clients possess labeled data.
We begin by conducting experimental investigations to illustrate the impact of
various types of heterogeneity on the outcomes of FL. Afterward, we perform
a theoretical analysis and establish an upper bound for the risk of the global
model for each client. Accordingly, we see that minimizing heterogeneity be-
tween the clients minimizes this upper bound. Building upon this insight, we
develop a method aimed at minimizing this heterogeneity to personalize the
global model for the clients, thereby enhancing the performance of the feder-
ated system.

This thesis focuses on two practical applications that highlight the rele-
vant challenges: Predictive Maintenance and Network Security. In predictive
maintenance, the focus is on fault identification using both DA and FL. Addi-
tionally, the thesis investigates predicting the state of health of electric bus bat-
teries using DA. Regarding network security applications, the thesis addresses
network traffic classification and intrusion detection, employing DA.
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1. Introduction

1.1 Introduction

Machine Learning (ML) algorithms are capable of learning patterns from data
but need a crucial consideration: the assurance of generalizability. The gener-
alizability of an ML model refers to its ability to make accurate predictions on
new, unseen data beyond its training dataset. When a model generalizes well,
it means that it has learned the underlying patterns and relationships in the
training data, allowing it to make accurate predictions on test datasets. Gener-
alization is often assessed by evaluating a model’s performance on a separate
validation or test dataset that it hasn’t seen during training. However, the as-
sessment of the generalization of an ML model is based on the IID (Indepen-
dent and Identically Distributed) assumption [1]. The IID assumption states
that the data used to train and test a model are independent and identically dis-
tributed. "Independent" means that the occurrence or value of one data point
does not influence the occurrence or value of another data point. "Identically
Distributed" means that all data points come from the same underlying prob-
ability distribution, which implies that the data’s statistical properties (e.g.,
mean, variance) are the same across the entire dataset. The IID assumption
is necessary for generalization assessment because it ensures that the model
learns relevant patterns and relationships from the training data that are likely
to hold true in the test data. However, ensuring that the IID assumption holds
can be challenging, especially in real-world scenarios.

Domain adaptation (DA) is a subfield of machine learning that deals with
situations where the distribution of data in the target domain (a domain from
which test data is drawn) is different from the distribution of data in the source
domain (a domain where training data is drawn from) [2]. This situation can
arise in various practical applications, including sentiment analysis [3], com-
puter network security [4; 5], medical image analysis [6], predictive main-
tenance [7; 8] and so on. In this thesis, we particularly focus on predictive
maintenance and computer network security applications.

In the context of predictive maintenance, an example of the practical use
of DA is the maintenance of electric buses’ batteries. When a fleet obtains new
buses to operate in significantly different environmental conditions, gather-
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ing substantial training data specific to these new vehicles can be challenging.
These new vehicles are considered to be from the target domain, and the goal
is to develop a predictive maintenance model for them. However, historical
data may exist from buses used in moderate climates, which is considered the
source domain. In such situations, DA techniques adapt the historical data
from the source domain to the data from new buses in the target domain in or-
der to train an ML model for the target. These adaptation techniques consider
the differences in environmental conditions, such as extreme temperatures, en-
suring that the predictive maintenance model is effective for the new buses.

Similarly, as an example in the computer network security context, con-
sider the situation where an organization expands operations into new regions,
launches new applications, and adds new users. The data generated in these
new environments can be different from what the organization has previously
encountered. Additionally, gathering new data, especially data related to new
cyberattacks, can be challenging and expensive, as simulating such attacks on
a network requires substantial resources. In these circumstances, DA can be
a practical approach that involves using the data available and adapting it to
the new network environment. This adaptation helps in training an effective
machine learning model by transferring knowledge about attacks from other
environments to new ones [4].

Accordingly, DA is particularly valuable in real-world applications with a
dynamic nature and diverse data that is continually changing, where it would
be impractical to collect large amounts of domain-specific labeled data for
training purposes. It allows existing data to be repurposed for new tasks or
environments. In other words, DA can be used to address deviations from the
IID assumption and improve the ML model’s generalization ability.

There is a fundamental requirement for DA in that data from various do-
mains must be accessible. As an illustration, consider these domains as sepa-
rate companies operating similar equipment. However, privacy concerns present
a significant challenge, as these corporations may be unwilling to share their
owned data. Consequently, leveraging the valuable insights contained within
their data using conventional DA techniques can be challenging. In such cir-
cumstances, Federated Learning (FL) offers a potential solution.

FL is a machine learning approach designed to train models across mul-
tiple decentralized clients while keeping the data secured on the clients. It
enables collaborative model training without sharing the actual data, making it
particularly useful in scenarios where data privacy and security are essential.

A shared property between FL and DA relates to their focus on data orig-
inating from diverse domains, which results in data heterogeneity. DA, by
having direct access to the data, aims to remove such heterogeneities and con-
sequently improve the performance of the models. In the federated setting, a
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specialized branch known as Non-IID FL or Heterogeneous FL addresses this
challenge. Heterogeneous FL aims to moderate these divergences without di-
rectly accessing the underlying data, thus enhancing the performance of the
final models while protecting privacy.

Thus, we begin this thesis by examining DA in different scenarios and then
proceed to examine Heterogeneous FL from a DA perspective.

1.2 Challenges and research questions

Throughout our study of learning tasks across a variety of domains, we con-
sider three key dimensions: data availability, data accessibility, and data het-
erogeneity. Data availability, whether labeled or unlabeled data, has been a
continuous challenge within the machine-learning community. Addressing
practical industrial problems in the real world emphasizes the importance of
this challenge. Data accessibility, regardless of the volume of data available
within each domain, is a critical factor to consider. Due to privacy concerns,
many data owners refuse to share their data. Data heterogeneity, whether the
data is shared or non-shared, may arise as a result of multiple sources of data.
This heterogeneity can have notable consequences, potentially resulting in per-
formance degradation for a model, whether it is learned through a centralized
or federated setting. The following four research questions are outlined for this
thesis based on the mentioned considerations.

R1. How can we minimize the data requirement, both labeled and unla-
beled data, for the adaptation process? DA is primarily developed to tackle
the challenge of insufficient labeled data in the target domain. Nonetheless,
the availability of data, regardless of whether it is labeled or unlabeled, is a
fundamental requirement for the adaptation process. Consequently, a signifi-
cant challenge arises regarding the amount of data available and accessible for
adaptation purposes.

R2. How can we minimize misalignment while not having enough la-
beled data in a domain? Given the insufficient target data, the right alignment
of the diverse domains is a critical concern in DA. Class misalignment in adapt-
ing the wrong classes can lead to adverse consequences, including degradation
in model performance rather than the intended enhancement, illustrating the
difficulties involved in domain adaptation.

R3. How do various forms of diversity influence the outcomes of the
global model in Federated Learning, and how do these diverse characteris-
tics relate to the principles of Domain Adaptation? Up until this point, our
assumption has been that we have access to data from different domains rep-
resented by different clients. However, taking into account that certain clients
are unwilling to share their data, we move to a federated setting. In the con-
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Table 1.1: Details of papers contributing to the Research Questions.

text of federated learning, we encounter heterogeneity in the data generated by
different clients, and this heterogeneity can affect the performance of the final
shared model, namely the global model. Consequently, we intend to address
the effect of data heterogeneity in FL from a DA perspective.

R4. How can we effectively reduce statistical heterogeneity in a federated
setting without direct access to the data? Our last research question concerns
minimizing the distribution divergence among clients within a federated set-
ting where we do not have direct access to the data from different clients.

Detailed information on which papers contribute to the answer to each
research question can be found in Table 1.1.

1.3 Summary of papers and Authors’ contribution

Contrary to all other texts in this thesis, parts of this section are written in the
“first person” format to highlight personal statements about the authorship of
the papers.

Figure 1.1 visualizes the contributions of this thesis and the attached pa-
pers to the field. We examine these contributions from four perspectives: data
availability within the target domain, practical applications, the number of do-
mains, and the task addressed. Additionally, alongside the above factors, we
consider data accessibility, defining the problem as either domain adaptation or
federated learning. Roman numerals in the figure correspond to the respective
papers associated with each of the aspects.

Below is a summary and the respective authors’ contributions for each
paper. It is worth noting that the order of the papers is as follows: the first six
papers relate to DA, while the last two are related to FL. The papers on DA are
arranged based on their assumption of data availability in the target domain.

PAPER I: Noise-robust representation for fault identification with limited
data via data augmentation.
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Figure 1.1: Contributions of this thesis and the appended papers.
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Taghiyarrenani Z, Berenji A.
In PHM Society European Conference 2022 Jun 29 (Vol. 7, No.
1, pp. 473-479).

Summary. The heterogeneity among the samples can be caused
by the presence of noise introduced into the data. When consid-
ering industrial equipment, it is probable that varying degrees of
noise may be added to the data, further contributing to the com-
plexity of the dataset. In paper I [9], we addressed the presence
of data with varying levels of noise, treating them as distinct do-
mains. Then, we introduced a denoising method by leveraging
the concept of adapting datasets. Using the fewest samples pos-
sible, we designed the denoising task to remove as much noise
as possible.

Contribution. For this paper, I conducted background research
and came up with the idea of using the concept of DA for denois-
ing purposes. I designed the study and worked with Amirhos-
sein on the experiments. Then, I analyzed the results, produced
the tables and figures, and wrote the manuscript. Also, he was
involved in writing the sections of the paper that were primar-
ily concerned with the application rather than the method. In-
deed, this work was a collaborative effort with Amirhossein,
who holds expertise in mechanical engineering and provided an
application-oriented perspective to this paper.

PAPER II: Facilitating Semi-Supervised Domain Adaptation through Few-
shot and Self-supervised Learning
Taghiyarrenani Z, Nowaczyk S, Pashami S, Bouguelia MR.
(submitted)

Summary. Sometimes, collecting unlabeled data is straight-
forward, while gathering labeled data presents a challenge. In
such scenarios, semi-supervised DA methods make use of the
accessible labeled samples from different but related domains,
referred to as source domains, to enhance the learning process
within the desired domain, referred to as the target domain. In
paper II, we introduced a novel semi-supervised DA method
that leverages contrastive and adversarial techniques to facili-
tate adaptation between two distinct domains.

Contribution. For this paper, I conducted background research
and came up with the idea presented in the paper. I designed
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the study, conducted the experiments, analyzed the results, pro-
duced the tables and figures, and wrote the manuscript with su-
pervision from the other authors.

PAPER III: Multi-Domain Adaptation for Regression under Conditional Dis-
tribution Shift.
Taghiyarrenani Z, Nowaczyk S, Pashami S, Bouguelia MR.
Expert Systems with Applications. 2023 Aug 15;224:119907.

Summary. When differences between domains arise from vari-
ations not just in features but also in associated labels, it be-
comes crucial to utilize separate DA methods for regression and
classification tasks. In paper III [10], we have presented a DA
method for regression that reduces any arbitrary, either marginal
or conditional, shift between domains. Furthermore, this paper
extended our methodology to consider multi-domain scenarios
where each domain contains a limited number of labeled data
samples instead of restricting our focus solely to two source and
target domains.

Contribution. For this paper, I conducted background research
and came up with the idea presented in the paper. I designed
the study, conducted the experiments, analyzed the results, pro-
duced the tables and figures, and wrote the manuscript with su-
pervision from the other authors.

PAPER IV: ITL-IDS: Incremental Transfer Learning for Intrusion Detection
Systems. Mahdavi E, Fanian A, Mirzaei A, Taghiyarrenani Z.
Knowledge-Based Systems. 2022 Oct 11;253:109542.

Summary. Given the dynamic nature of the real world, it is
evident that environments will evolve over time, and a model
developed once may experience a decline in performance. This
challenge is particularly critical in cases like intrusion detection
systems. Therefore, methods designed for such environments
should possess the capability to adapt and continue learning
as new data arrives, ensuring ongoing effectiveness and rele-
vance. In paper IV [5], we present an incremental DA method
specifically for network intrusion detection systems. In addi-
tion, leveraging expert knowledge in machine learning enhances
model performance and ensures that domain-specific insights
contribute to more accurate predictions or decision-making. There-
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fore, in this paper, we have also designed a solution to make use
of expert knowledge to mitigate the negative transfer when per-
forming DA.

Contribution. This paper is a collaborative effort with a col-
league, Ehsan Mahdavi, who has expertise in Network Security
applications. In this collaboration, I conducted background re-
search on Transfer Learning, particularly on DA. The challenge
I solved was developing and applying a DA method in network
security, as this application has its own challenges. Specifi-
cally, my contribution to this paper involved suggesting an in-
cremental DA method and outlining its application within the
proposed framework. Furthermore, as an integral component
of the framework, I incorporated expert knowledge to facilitate
DA. Accordingly, I did experiments related to DA and also some
experiments to compare the results with the state-of-art. The
entire work was carried out under the supervision of two other
authors. This work is a collaboration between Halmstad Univer-
sity in Sweden and Isfahan University of Technology in Iran.

PAPER V: Domain Adaptation with Maximum Margin Criterion with ap-
plication to network traffic classification.
Taghiyarrenani Z, Farsi H.. In International Workshops of
Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases 2022 Sep 19 (pp. 159-169). Cham:
Springer Nature Switzerland.

Summary. It is possible that in certain scenarios, the difference
between source and target can also be due to differences in the
available classes. In this thesis, as detailed in paper V [11], a
method for addressing situations where certain classes are miss-
ing in the source domain is developed.

Contribution. This paper is a collaborative effort with a col-
league from industry, Hamed Farsi, who has expertise in Net-
work Security applications. For this paper, I conducted back-
ground research and came up with the idea presented in the pa-
per. I collaborated with Hamed to ensure that the method is
valuable for the field. I designed the study, conducted the ex-
periments, analyzed the results, produced the tables and figures,
and wrote the manuscript.

PAPER VI: Towards Geometry-Preserving Domain Adaptation for Fault Iden-
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tification. Taghiyarrenani Z, Nowaczyk S, Pashami S, Bouguelia
MR. In International Workshops of Joint European Conference
on Machine Learning and Knowledge Discovery in Databases
2022 Sep 19 (pp. 451-460). Cham: Springer Nature Switzer-
land.

Summary. There are situations where some classes are absent
in the target domain. In such cases, our objective is to enable our
model to make predictions for these missing classes using only
the information accessible from the source domain. In paper VI
[12], We have designed a method that, by integrating DA and a
geometry-preserving technique, adapts different domains when
data for some classes are missing in the target domain during
training, not test. We call this scenario as Limited DA.

Contribution. I conducted the background research and came
up with the idea for the paper. I designed the study, conducted
the experiments, analyzed the results, produced the tables and
figures, and wrote the manuscript with supervision from the
other authors.

PAPER VII: Analysis of Statistical Data Heterogeneity in Federated Fault
Identification.Taghiyarrenani Z, Nowaczyk S, Pashami S.
In PHM Society Asia-Pacific Conference 2023 Sep 4 (Vol. 4,
No. 1).

Summary. Data from various domains, though available, may
remain inaccessible due to data owners’ privacy concerns, high-
lighting the value of federated learning. A widely recognized
approach is FedAvg, which aggregates models from different
domains (clients) and computes the average of local models
to create a global model. In paper VII [13], we connect DA
and FL principles, offering an empirical case study that demon-
strates the impact of sample heterogeneity across different clients
in FL.

Contribution. I conducted the background research and came
up with the idea for the paper. I designed the study, conducted
the experiments, analyzed the results, produced the tables and
figures, and wrote the manuscript with supervision from the
other authors.

PAPER VIII: Heterogeneous Federated Learning via Personalized Generative
Networks.Taghiyarrenani Z, Alabdallah A, Nowaczyk S, Pashami
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S.
submitted.

Summary. In paper VIII[], we theoretically discuss the im-
pact of sample heterogeneity among different domains (clients)
in federated learning on the outcomes of the global model for
each client. Accordingly, we propose a method to mitigate this
heterogeneity and enhance the results within a federated setting.

Contribution. I conducted the background research and came
up with the idea for the paper. I designed the study, conducted
the experiments, analyzed the results, produced the tables and
figures, and wrote the manuscript with supervision from the
other authors.

The following papers also contributed to the domain adaptation
topic and are included to indicate potential future directions.

PAPER IX: Why Industry 5.0 Needs XAI 2.0?. Szymon Bobek, Sławomir
Nowaczyk, Joao Gama, Sepideh Pashami, Rita P. Ribeiro, Zahra
Taghiyarrenani, Bruno Veloso, Lala Rajaoarisoa, Maciej Szelążek
and Grzegorz J. Nalepa. The 1st World Conference on eXplain-
able Artificial Intelligence (xAI 2023).

Summary. This is a position paper about the importance of
Explainable AI in Industry [14].

Contribution. I wrote the sections concerning the inevitability
of data heterogeneity in various industries and the necessity for
explainable Artificial Intelligence (XAI) in such contexts, par-
ticularly when applying DA. This paper is a collaboration be-
tween Halmstad University in Sweden, Jagiellonian University
in Poland, and INESC TEC in Portugal.

PAPER X: Towards Explainable Deep Domain Adaptation. Szymon Bobek,
Sławomir Nowaczyk, Sepideh Pashami, Zahra Taghiyarrenani,
and Grzegorz J. Nalepa. Joint workshops on XAI methods, chal-
lenges and applications at the 26th European Conference on Ar-
tificial Intelligence

Summary. This paper presents two complementary explanation
mechanisms for aligning domains in DA: 1) explaining how the
source and target distributions are aligned in the latent space. 2)
descriptive explanations on how the decision boundary changes
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in the adapted model with respect to the source model. Contri-
bution. I prepared the datasets and also the codes for the DA
part. I also contributed to the writing of the paper. However,
the section related to explainability was mainly done by other
authors. This paper is a collaboration between Halmstad Uni-
versity in Sweden and Jagiellonian University in Poland.

Papers that are not included in the thesis.

PAPER XI: An Analysis of Vibrations and Currents for Broken Rotor Bar
Detection in Three-phase Induction Motors. Berenji A, Taghi-
yarrenani Z.
In PHM Society European Conference 2022 Jun 29 (Vol. 7, No.
1, pp. 43-48).

Contribution. This paper, [13], is a collaboration effort with
Amirhossein, who has expertise in mechanical engineering.

PAPER XII: Fault identification with limited labeled data. Berenji A, Taghi-
yarrenani Z, Rohani Bastami A. Journal of Vibration and Con-
trol. 2023 Mar 17:10775463231164445.
Contribution. This paper [15] is a result of a master thesis, and
I was involved as a supervisor.

PAPER XIII: curr2vib: Modality Embedding Translation for Broken-Rotor
Bar Detection. Berenji A, Taghiyarrenani Z, Nowaczyk S. In
workshops of Joint European Conference on Machine Learning
and Knowledge Discovery in Databases 2022 Sep 19 (pp. 423-
437). Cham: Springer Nature Switzerland.

Contribution. In this paper, [16] I was involved as a mentor.

PAPER XIV: Data-Centric Perspective on Explainability Versus Performance
Trade-Off. Berenji A, Nowaczyk S, Taghiyarrenani Z. In In-
ternational Symposium on Intelligent Data Analysis 2023 Apr 1
(pp. 42-54). Cham: Springer Nature Switzerland.

Contribution. In this paper, [17] I was involved as a mentor.
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2. Background

2.1 Domain Adaptation

Let’s define X as input space, D as a probability distribution on X, and D̂
as an empirical probability distribution. We define the labeling function f as
f : X→ Y where Y is output space.

A hypothesis h is defined as h : X→ Y. H is a hypothesis space for X. The
risk of the hypothesis, ε(h), captures the disagreement between the hypothesis
and the labeling function as

ε(h) = Ex∼D
[
|h(x)− f (x)|

]
.

Similarly, the empirical hypothesis risk is defined as

ε̂(h) = Ex∼D̂

[
|h(x)− f (x)|

]
.

Symmetric difference hypothesis space H∆H [18]: Given a hypothesis
space H, H∆H is defined as

H∆H =
{

h(x)⊕h′(x) : h, h́ ∈H
}

,

where ⊕ represents the XOR operator. This means a hypothesis belongs to
H∆H if a given pair in H, h(x) and ´h(x) disagree.

AH is a set of measurable subsets for some hypothesis h ∈H, so that,

{x : x ∈ X,h(x) = 1} ∈AH,∀h ∈H.

Similarly, AH∆H is defined as

{x : x ∈ X,h(x) ̸= h′(x)} ∈AH∆H ,∀h,h′ ∈H∆H.

.
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H-distance between two distributions[18]: Given D and D́ as two arbitrary
distributions, H-distance is defined as:

dH(D, D́) := 2supA∈AH
|PrD(A)−PrD́(A)|,

similarly, dH∆H(D, D́) is defined as distribution divergence induced by
H∆H as:

dH∆H(D, D́) := 2supA∈AH∆H

∣∣PrD(A)−PrD́(A)
∣∣.

The defined distribution divergence is defined over two arbitrary distribu-
tions D and D́. Let’s define a representation function as R :X→Z and D̃ and ˜́D
the corresponding distributions over Z. Thus, one can calculate the distribution
divergence over Z as:

dH∆H(D̃, ˜́D) := 2supA∈AH∆H

∣∣∣PrD̃(A)−Pr ˜́
D

(A)
∣∣∣.

First, we define a domain, τ as triple τ = ⟨D,X, f ⟩; a distribution D over
input space X with the corresponding labeling function f .

Generalization Bounds for Domain Adaptation [19] [18] : Lets assume
two different source and target domain as τs = ⟨Ds,X, f ⟩, τt = ⟨Dt ,X, f ⟩. As-
suming R : X→ Z as a shared representation function for source and target
domains, D̃s and D̃t are corresponding distributions over Z. The generaliza-
tion bound on the target domain error is defined as follows, so that with the
probability at least 1−δ , for every h ∈H:

ετt (h)≤ ε̂τs(h)+

√
4
m

(
d log

2em
d

+ log
4
δ

)
+ dH∆H(D̃s, D̃t)+ λ (2.1)

where d is the VC-dimension of a set of hypothesis H. m is the number of
source samples, and ε̂τs(h) is the empirical risk of the hypothesis trained on
source data, and e is the base of the natural algorithm. Considering h∗ as the
optimal hypothesis so that h∗ = argmin

h∈H
(ετs(h) + ετt (h)), then λ is the optimal

risk on two domains, λ = ετs(h∗)+ ετt (h∗).
Conventional machine learning methods consider training, and test sam-

ples are drawn from the same domain; the same distribution. Therefore, equa-
tion 2.2 will be reduced to the standard Vapnik-Chervonenkis theory, as fol-
lows:
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ετt (h)≤ ε̂τs(h)+

√
4
m

(
d log

2em
d

+ log
4
δ

)
(2.2)

Accordingly, having more than one domain, DA aims to minimize the dis-
tribution distance between the domains to solve the task f using the samples
from all available domains.

Let’s assume a dataset Sτ drawn from domain τ is Sτ = {(xτ
i ,y

τ
i )}n

i=1,
where n is the number the samples from domain τ .

The above definitions allow us to categorize and discuss DA methods from
different perspectives. Generally, the term DA is used to describe the adapta-
tion of two domains, which is the most commonly addressed scenario. In this
case, we have two domains source and target, respectively; the corresponding
datasets are Ss = {(xs

i ,y
s
i )}n

i=1 and St = {(xt
i,y

t
i)}m

i=1, where n and m are the
numbers of source and target samples, respectively. The dataset Ss is assumed
to be available; according to availability of {yt

i}m
i=1 three different categories

are defined:

• Unsupervised-DA: in this category, {yt
i}m

i=1 is not available; In other
words, only unlabeled target samples are available for training.

• Semi-supervised-DA: In this category, {yt
i}p

i=1 is available where p≪m;
In other words, very few target samples are labeled.

• Supervised-DA: In this category, {yt
i}m

i=1 is available; however, it is usu-
ally assumed that m≪ n, i.e., the number of target samples is less than
the number of source samples.

Considering p(x,y) as a joint probability distribution over X×Y, p(x,y) =
p(x)p(y|x) = p(y)p(x|y), where p(x) is a marginal probability distribution over
the input space and p(y|x) and p(x|y) are conditional probability distributions.
The difference between the joint probability distributions, p(x,y), of the do-
mains is the central issue DA deals with. Considering this difference, two ma-
jor categories are discussed in the literature: covariate shift and concept shift.
The former refers to a situation where ps(x) ̸= pt(x) but, ps(y|x) = pt(y|x)
whereas the latter means ps(x) = pt(x) but ps(y|x) ̸= pt(y|x) or ps(x|y) ̸=
pt(x|y). If the ps(x,y) = pt(x,y), the problem will be reduced to the conven-
tional machine learning.

Based on the number of domains, three different categories can be defined
in cases where there are more than two domains: Multi-Source DA, Multi-
Target DA, and Multi-DA. Their names describe the two first as having multi-
ple sources or multiple targets, respectively. However, we define the Multi-DA
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category in this way: there are multiple symmetric domains in terms of the
availability of the samples. In other words, the available data for each domain
in this category is insufficient to solve the task (to train domain-specific mod-
els). Thus, we adapt the samples from multiple domains so that each domain
compensates for the sample shortage in the other domain.

The literature also introduces homogeneous and heterogeneous DA meth-
ods based on the differences between the domains’ input feature spaces, X.
In the case of identical input feature spaces of domains, homogeneous DA is
the solution; otherwise, heterogeneous DA is needed. In this thesis, we only
address homogeneous DA.

Additionally, the label set of the domains defines different categories. The
categories in the standard DA benchmarks are the same in all domains. The
authors in [20] call this setting Closed-set DA. They also define Open-set DA,
which different domains include different categories. There are, however, dif-
ferent ways in which different categories can occur. Specifically, open-set DA
occurs when both the source and target domains have some common categories
and, at the same time, both domains have other unknown categories. It is pos-
sible that the unknown categories are indeed different from one another. As a
result, the final target model should be able to predict the output of a sample
as one of the known categories or an unknown category.

Another setting in [21] is defined as Partial DA. In a partial DA setting,
the categories in the target domain are a subset of the categories in the source
domain. As a result, there are some outlier categories in the source domain,
which may have a negative impact on the results of DA. A partial DA model
is trained to predict the output of samples as one of the available categories in
the target. A new setting is defined in this thesis and is referred to as Limited
DA. Similar to partial DA, available categories in the target domain in training
time (of the adaptation model) are a subset of those in the source domain.
The additional categories in the source domain are not outliers but will be
encountered in the target domain during testing. In fact, we lack the samples
from some categories in target during training, while we may encounter them
during the test. Therefore, the objective is to construct a model that predicts
the output of a target sample as a category within the source data.

Contribution of the thesis in Domain Adaptation field Figure 2.1 shows
the mentioned categories. This thesis has addressed the categories that are
indicated by darker boxes.

Concerning the availability of samples in the target domain and the subse-
quent categorization of different DA categories, Figure 2.2 illustrates the the-
sis’s contribution to DA by specifying the relevant papers for each category.
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Figure 2.1: Categorization of Domain Adaptation methods. The density of the
gray boxes indicates the extent of the investigation conducted for that category.

2.2 Federated Learning

Federated Learning (FL) is a machine learning approach that allows model
training across multiple decentralized edge devices or data owners, generally
called clients[22], [23]. The key idea behind FL is the ability to perform the
training phase of machine learning models in a distributed fashion. This ap-
proach presents advantages like reducing network resource burden and enhanc-
ing the privacy of individual data sources by keeping data localized. As a
result, FL is particularly well-suited for use cases involving sensitive data or
those where centralized data aggregation is not feasible.

The scale of FL from the number of clients is categorized into cross-silo
and cross-device. In the cross-silo scenario, the clients can be distinct institu-
tions or companies. A cross-device setting involves an extremely large number
of small clients, such as mobile devices [24].

Two terminologies, "client" and "server," are common in the federated set-
ting. This thesis equates the "client" to the concept of a "domain" in the context
of DA. Clients can be connected in a number of different topologies, with two
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of the most well-known being "peer-to-peer" and "star-shaped." The peer-to-
peer topology is known as fully decentralized. In a star-shaped connection, a
central server is the client’s coordinator during model training. However, the
server typically does not have access to the raw data.

Other key terminologies in FL include "local model," "global model," and
"aggregation mechanism." The definitions of these terms are as follows:

Local Model: This refers to a machine learning model that a client indi-
vidually trains using its own local data. Each client has its own local model
that learns from its data.

Global Model: The global model is a unified model constructed by aggre-
gating the local models to be generalized well across all clients.

Aggregation Mechanism: The aggregation mechanism is the method to
construct the global model from the local models provided by clients.

Let’s use the scenario of predicting vehicles’ energy consumption in a fed-
erated setting. This example will help us explain the concepts in this section.
Let’s consider a star-shaped system for the federated setting, where all clients
are connected to a central server. Every federated system may have differences
at different levels, where various components are involved.

There may be different types of clients. As an example, we refer to vehicles
as clients. However, we include either buses or trucks in the system. In this
case, the nature of the features between the clients may be different, which
results in a heterogeneous feature set between clients [25].

The available memory or communication resources may differ in different
vehicles, resulting in heterogeneous communication and asynchronous clients
[26].

Alternatively, a federated system can be specifically designed for buses.
Despite sharing a common nature and deploying similar sensors to collect data
to have the same feature set, buses may operate in distinct locations with vary-
ing external conditions, such as diverse weather situations. This divergence
can impact the statistical properties of the data. This scenario needs Non-IID
or Statistical Heterogeneous FL [25; 27; 28].

This thesis focuses on the statistical heterogeneity between the clients.
There are different types of statistical heterogeneity, depending on the local

labels and samples. As categorized by authors in [25], these differences fall
into four categories: quantity skew, quality skew, feature skew, and label skew.

Quantity skew relates to an imbalanced dataset among clients, a challenge
addressed by numerous heterogeneous federated learning approaches in the
literature including [29–35]. For example, according to the example provided
of a federated system of vehicles, certain types of faults are more likely to
occur in certain types of vehicles. As a result, the number of samples per fault
varies among clients.
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Quality skew involves the presence of noise in either labels or samples.
Feature skew occurs when the distribution of samples across the feature space
differs. There are some vehicles that operate in cold climates and others that
operate in warm climates. Such differences affect the statistical properties of
the clients’ data. Lastly, label skew denotes differences in available label sets
among clients or variations in label preferences. For example, what might be
a normal engine temperature in a hot location could be considered an anomaly
in a cold location. Label preference skew is notably problematic, introducing
confusion to the global model [13].

To provide a formal definition, we continue with symbols as previously
defined for DA. Nevertheless, in order to ensure the clarity of this section, we
will repeat the initial definitions as follows:

Assume X as input space, D as a probability distribution on X and labeling
function f as f : X→ Y where Y is output space. A hypothesis h is defined as
h :X→ Y. The risk of the hypothesis, ε(h), captures the disagreement between
the hypothesis and the labeling function as ε(h) =Ex∼D

[
|l(h(x), f (x))|

]
, where

l is a loss function. We consider every client as a domain, as in DA. There-
fore, we define the set of clients as T = {τk : k ∈ K} with K clients where
τk = ⟨Dk,X, fk⟩.

Accordingly, all clients are assumed to share the same input space X. The
clients may, however, have different data distributions Dk over the input space.
The labeling function fk may also be different between the clients. The case
in which fi = f j when i ̸= j means that all local data belong to the same
global distribution. The setting with different client data distributions or la-
beling functions in the literature is called non-IID or statistical heterogeneous
federated learning (HFL) [25].

The risk of every local model hk of client τk is

ετk(hk) = Ex∼Dk

[
l (hk(x), f (x))

]
.

The aim of federated learning is to learn a global model hg. The risk of this
model is calculated over all clients T as εT(hg) := Eτk∈T [ετk(hg)] .

This formula calculates the expectation risk of a single global model hg

on all clients. The most well-known FL method in the literature is FedAvg
[36]. In FedAvg, every client takes steps of gradient descent on its local model
using its local data, and the server calculates the average of the local models
as the global model. Intuitively, by averaging the local models, the model
may be led toward the average optimum of the individual clients. However,
in the presence of heterogeneity, this local optimum may not be beneficial for
all clients equally, thereby influencing the overall performance of the global
model [28]. In essence, greater heterogeneity among the clients’ data poses a
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higher risk to the effectiveness of the global model. Non-IID or Heterogeneous
FL techniques aim to overcome the challenge of data heterogeneity [25].

Among the approaches for heterogeneity is Personalization techniques [28].
This technique could be beneficial, especially for clients whose data drifts sig-
nificantly. However, the extreme case of personalization is the local model
without any knowledge transfer between the clients. Personalized FL aims to
solve the challenge of client heterogeneity by establishing a tradeoff between
personalization and generalization [28].

Contribution of the thesis in Federated Learning This thesis initiates an
empirical examination of the impact of data heterogeneity by simulating var-
ious types of heterogeneity using a dataset derived from vibration data of an
inductive motor [13]. Building on the empirical findings, we subsequently
present a theoretical analysis demonstrating that heterogeneity between each
client and the rest influences the performance of the global model specific to
that client.

Drawing on this theoretical foundation, we propose an approach inspired
by the context of DA. Specifically, we proposed the construction of a genera-
tor for each client. Through adversarial training, we ensure that the generator
produces data within the region of space where discrepancies among clients
exist, enabling each client to augment its own dataset and thereby reduce het-
erogeneity with the rest of the clients. Consequently, our method aligns with
the data augmentation category, aiming to mitigate heterogeneity in FL.
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Figure 2.2: Categorization of Domain Adaptation methods and the thesis contri-
bution based on the availability of the samples.
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3. Summary of the methods
proposed in the papers

Data may originate from multiple domains, resulting in discrepancies and thus
adversely affecting the performance of conventional machine learning models.

Paper I presents a new denoising approach utilizing the concept of DA
[9]. To explain, let’s take a dataset originating from a distribution. We assume
that environmental noise alters the sample distribution, leading to a decline in
a trained model’s performance in noisy environments. Therefore, training a
model capable of adapting noisy and original data allows it to maintain per-
formance in a noisy environment. However, for an effective model, it needs to
endure not just one level of noise but multiple levels. Figure 3.1 illustrates the
steps of a suggested denoising approach designed to eliminate various noise
levels, even in the absence of sufficient labeled samples. We augment the
samples with several noise levels to accomplish this objective, inspired by un-
supervised contrastive learning techniques. By pairing original and noisy sam-
ples, we create paired sample sets. Subsequently, a Siamese neural network
is trained using the contrastive loss function based on these paired samples.
Training the network results in a feature extractor that maps the samples to a
new space. In this space, the corrupted samples are aggregated with the orig-
inal samples, resulting in denoising. Furthermore, because the new space is
created using contrastive learning, it is class-distinguished and can be achieved
through the use of a small number of labeled samples. From the DA perspec-

(a) Data Aug-
mentation

(b) paring the sam-
ples (c) Training the network

Figure 3.1: Three steps of the proposed denoising method (paper I)

tive, we synthetically construct different domains for this paper by augmenting
the data. Therefore, we have symmetric domains without any constraint on the
number of samples per domain.
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In the remaining papers, however, we explicitly know the domains and
propose DA methods in semi-supervised, supervised, and unsupervised DA
settings in the papers II, III and IV, respectively. In addition, we propose
solutions for Partial DA (PDA) and Limited DA (LDA) in papers V and VI,
respectively.

Paper II addresses the adaptation problem for classification tasks in a two-
domain setting where the source domain is fully labeled. We also have access
to unlabeled target samples and a limited number of labeled target samples. In
this paper, we propose a new representation-learning-based semi-supervised
DA method called Adversarial Contrastive Semi-Supervised Domain Adapta-
tion (ACSSDA). Through ACSSDA, a shared feature representation for both
source and target domains is learned using very few target sample labels. AC-
SSDA merges two objectives, one for adaptation and the other one for distin-
guishing different classes. As shown in figure 3.2, ACSSDA trains a domain
classifier F with an adversarial training procedure to ensure that the resulting
feature space is domain agnostic. Simultaneously, the contrastive loss inspired
by self-supervised learning techniques discriminates different classes. In addi-
tion, figure 3.3 illustrates how ACSSDA prevents class misalignment and neg-
ative transfer; every available labeled target sample is paired with all source
samples. The other target samples will gradually pair with the source samples
as the training proceeds.

To conclude, ACSSDA is able to adapt domains and remove the probability
shift between the domains for the classification task.

Numerous DA methods are available in the literature to address the covari-
ate shift, cf. [37], [38], [39], [40] and etc. The objective of these methods,
regardless of whether they are used for classification or regression, is to unite
the marginal distributions of the source and target, denoted as Ps(x) and Pt(x),
respectively. In other words, in this case, since neither the labels nor the out-
come variables are considered for adaptation, the same adaptation methods can
be applied for solving regression and classification problems.

On the other hand, for concept shift, DA should unify conditional distribu-
tions of source and target, i.e., Ps(y|x) and Pt(y|x). In the literature, several DA
methods have been proposed to address the concept shift issue for the classifi-
cation task [41], [42], [43]. A key principle of these methods is that samples
within each class are analyzed separately, and marginal distributions within
each class are minimized. Due to their assumption of the discrete nature of the
labels (classification tasks), such methods cannot be directly applied to regres-
sion. Solving concept shift in regression tasks, therefore, is more challenging.

Paper III proposes a multi-DA regression method that aims to minimize
arbitrary shifts between domains, whether marginal or conditional. We call
this method Multi-Domain Adaptation for Regression under Conditional shift,
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Figure 3.2: The architecture of the ACSSDA (paper II)

Figure 3.3: The figure on the left illustrates the class misalignment in the UDA
setting. The figure on the right shows how ACSSDA deals with this problem in
the SSDA setting. Each color represents an individual class, while the black dis-
plays unlabeled samples. The figures in the middle show the results of the align-
ment. A comparison of alignment results with actual sample labels is provided at
the bottom. In contrast to unsupervised settings, semi-supervised settings prevent
class misalignment (paper II).
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Figure 3.4: An illustration of how DARC adapts the domains for regression tasks
(paper III).

Figure 3.5: DARC (paper IV)

DARC. As part of the DARC, we introduce a new loss function, called Pairwise
Similarity Preserver (PSP). As shown in the figures 3.4 and 3.5, using the PSP
loss function, DARC is capable of mapping the difference in labels between
samples to the Euclidean distance between the samples in a new space; this
results in aligning the domains while preserving the task-specific information
within each domain. We evaluate DARC on a real-world dataset related to
e-mobility to predict the state of health of heavy-duty vehicles’ batteries.

The remaining papers, again, are proposed for the classification problem.
However, each considers a different situation.

Paper IV focuses on a specific application, network intrusion detection
[5]. Although DA may be considered a Transfer Learning (TL) subcategory,
we use TL and DA interchangeably in this study. The limitation of labeled
samples is one of the challenges in this area. Meanwhile, new technolo-
gies and applications may introduce new vulnerabilities to computer networks.
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To address this challenge, incremental learning is a practical approach. In
other words, this paper addresses two issues: transferring knowledge between
two instances of IDS and addressing the concept shift issue in each instance.
Paper IV presents a new framework for intrusion detection systems called
Incremental Transfer Learning for Intrusion Detection Systems (ITL-IDS) ca-
pable of learning in a network without any prior knowledge. An incremental
clustering algorithm is used to detect cluster numbers and shapes without as-
suming anything about the attacks in advance. The outcomes of the clustering
part transfer knowledge between other instances of ITL-IDS. With each itera-
tion, transfer learning provides incremental knowledge to target environments.
The proposed framework is designed so that we make use of the knowledge
of domain experts to perform adaptation with the goal of minimizing class
miss-alignment. Figure 3.6 shows the proposed framework.

Paper V considers a situation where some classes are missing in the source
domain. For performing the adaptation, we utilize the Maximum Mean Dis-
crepancy(MMD), which calculates the distance between two distributions. How-
ever, we aim to construct a transformation matrix that simultaneously adapts
the shared classes and keeps the information about non-shared classes. To this
end, we adopt the Maximum Margin Criterion (MMC), which maximizes the
between-class and minimizes the within-class scatter. We apply MMC to both
shared and non-shared classes. We achieve the desired transformation matrix
by minimizing the summation of MMD and MMC.

Paper VI, as a work in progress work, designs a method for the Limited
Domain Adaptation (LDA) setting. Some classes are missing in the target do-
main during adaptation in this setting. Therefore, we should only adapt the
shared classes. Regarding the missing classes in the target domain, since there
is no knowledge about them in the target, the only information that we can use
is what we have from the source domain. Therefore, it is crucial to maintain
their information and prevent them from distortion while adapting the source
and target domains. By this intuition, paper VI proposes to keep the geom-
etry of data while adapting the domains. To this end, this paper constructs a
new shared feature representation for both source and target using a Siamese-
shaped neural network. While it adversarially adapts the shared classes to each
other, it retains the distance between the samples. In other words, the distance
between samples in the original and constructed spaces will be kept equal. As
a work in progress, this paper solves this problem for a synthetic 2-dimensional
dataset and constructs a 2-dimensional new space. The distance measure used
is Euclidean distance. However, other distance metrics, of course, can be uti-
lized, for example, Geodesic distance.

Thus far, the emphasis has been on DA methods. However, in Papers VII
and VIII, we consider the heterogeneity among samples in situations where di-
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rect access to the data is unavailable, i.e., in a Federated setting. Due to the sig-
nificance of security and privacy in real-world applications, Federated Learn-
ing (FL) is experiencing increased adoption across various domains, including
predictive maintenance. FL enables independent companies to build models
while preserving data privacy collaboratively. However, as different companies
operate in diverse environments, their working conditions may vary, leading to
heterogeneity in their data distributions.

In paper VII, we focus on addressing the fault identification problem and
simulate various scenarios of data heterogeneity. The presence of heterogene-
ity between the samples from different domains (clients) poses challenges for
conventional FL algorithms, highlighting the crucial considerations that need
to be taken into account when designing federated predictive maintenance so-
lutions. Through experimental analysis, we demonstrate such challenges.

Finally, in paper VIII, as shown in figure 3.7, we theoretically explore
the impact of client heterogeneity on each individual client. We propose a
FL method, called FedGenP, that involves training client-specific generators
on the server. These generators generate samples that help reduce the hetero-
geneity between each client and the rest of the clients. This generator indeed
is adversarially trained using a Gradient Reversal Layer (GRL) as depicted in
figure 3.8 for a system with two clients.
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Figure 3.7: FedGenP (paper VIII)
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4. Conclusion and future work
directions

In this thesis, we have focused on the task of developing machine learning
models in the presence of data originating from multiple domains rather than
a single domain. Our study contains three key aspects: data availability, data
accessibility, and data heterogeneity. Specifically, under the umbrella of data
accessibility, we examined the spectrum from Domain Adaptation (DA), which
involves full accessibility to data from different domains, to Federated Learn-
ing (FL), where data from domains is not accessible, shaping the title of the
thesis: “From Domain Adaptation to Federated Learning.”

Our investigation began with DA and then moved to FL. The problem of
FL is quite connected to the problem of multi-domain adaptation. In FL, not
only the samples of different domains (clients) may are heterogeneous, but also
they are not directly accessible.

Regarding DA, we examined the case from a variety of perspectives, in-
cluding the volume of available labeled and unlabeled data, classification and
regression tasks, and the nature of heterogeneity. We conducted our investi-
gation in the context of two distinct applications: Predictive Maintenance and
Network Intrusion Detection. The outcomes of our research in the domain
adaptation field are described in papers I to VI. In all cases, regardless of the
DA scenario at hand, it is crucial to prioritize the minimization of misalign-
ment during the adaptation process.

In our study of federated learning, we have established both empirical and
theoretical connections with domain adaptation. We demonstrated how het-
erogeneity among samples originating from different clients can impact the
performance of a model trained within a federated setting. The outcomes of
our research in the federated learning field are described in papers VII and
VIII.

In the context of domain adaptation, one of the key requirements for de-
veloping or employing a domain adaptation method is understanding the dis-
tinctions between various domains. These distinctions may be due to statisti-
cal differences, especially when the feature sets are identical across domains.
Differences may also refer to variations in feature sets, label sets, or even dis-
parities in the level of difficulty when collecting data in different domains,
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resulting in domains with distinct data quantities or imbalanced classes. Tak-
ing into account every type of difference, domain adaptation will intersect with
other topics in the literature.

Concerning statistical differences, the key question is how the domains
differ from one another. Answers to queries, such as the root causes of these
disparities and the extent to which domains diverge, are helpful. By ensuring
proper alignment between domains, this knowledge facilitates domain adapta-
tion while maintaining model generalizability and preventing negative transfer.

In addition to implementing DA techniques, explaining the adaptation pro-
cess is a guarantee for achieving the correct alignment of domains. This level
of transparency holds particular significance when addressing real-world in-
dustry problems, as mentioned in paper IX. We demonstrated the validity of
this research direction in the paper X. In relation to Feature Alignment and
Decision Boundary Updates, we introduced two distinct explanation mecha-
nisms for domain adaptation.

Regarding the feature alignment, the explanation provided serves as an ex-
planation of how the distributions are aligned by the adaptation mechanism.
Concerning Decision Boundary Updates, the explanations clarify the direc-
tions in which the decision boundaries of the source model (a model trained
with source data, without the Domain Adaptation technique) are altered during
the adaptation process, leading to the formation of the decision boundaries of
the adaptation model (a model trained using domain adaptation technique us-
ing both source and target data). These two types of explanation can create op-
portunities to establish a more semantic connection between the two domains.
This, in turn, opens up possibilities for transferring background knowledge
from the source to the target domain.

On a per-paper basis, we address the extension of our research as follows.
An area for further exploration relates to the presented method for denois-

ing in paper I. This method is only constructed by using labeled samples. How-
ever, we would like to leverage a large amount of unlabeled data that is usually
available for many tasks. Unsupervised contrastive learning can be consid-
ered among the possible solutions, specifically those focusing on preventing
collapses.

In paper II, we provided a framework in which self-supervised learning
through data augmentation is possible. We aim to explore different data aug-
mentation for the purpose of domain adaptation.

In a subsequent study, there is a potential to extend paper III, DARC, that
solves the problem of DA for regression tasks. The input feature space of
the source and target is assumed to be identical in this paper. Nevertheless,
extending this method to work with source and target domains with different
input feature spaces is interesting. This idea is inspired by a real-world exam-
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ple: predicting the state of health of vehicles’ batteries when we want to use
data sampled at high-frequency and low-frequency rates. We should transfer
knowledge from high-frequency to low-frequency data to take advantage of
both signals.

In order to extend our proposed method for limited domain adaptation, in
paper V, we aim to apply the method to real-world datasets and evaluate it to
find the robustness of this method and to analyze its robustness toward discrep-
ancy or missing classes. In addition, in the limited domain adaptation setting,
the challenge is to solve a problem for which the available target samples are
only healthy, i.e., from none of the faulty classes we have the data. This case
needs to deal with transferring knowledge about faulty classes from the source
domain to the target that does not necessarily come from the labeled data. A
possible solution to solve this problem is to consider physics-based models. In
other words, while transferring knowledge from source to target for missing
classes, the physics knowledge compensates for the missing data in the target
domain.

The method proposed in paper VI solves the problem of network traffic
classification. This paper finds a linear transformation to adapt source and
target. This method can be extended to a kernelized one to support non-linear
transformation. In addition, more experiments are needed to identify how this
method is robust to the imbalanced classes and the difference between source
and target, which are of interest.

In our studies on FL in paper VII and VIII, we have demonstrated the
impact of heterogeneity on the performance of a global model across different
clients. Considering the significant increase in interest in FL from both the
research and industry sectors, there are many opportunities to explore. We
particularly want to extend our proposed method to work under a non-fully
supervised setting. Due to the challenges associated with obtaining labeled
data, especially when addressing real-world problems, this area attracts our
attention.

33





References

[1] MASASHI SUGIYAMA. Introduction to statistical machine learning. Morgan Kaufmann, 2015. 1

[2] SINNO JIALIN PAN AND QIANG YANG. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009. 1

[3] XAVIER GLOROT, ANTOINE BORDES, AND YOSHUA BENGIO. Domain adaptation for large-
scale sentiment classification: A deep learning approach. In Proceedings of the 28th international
conference on machine learning (ICML-11), pages 513–520, 2011. 1

[4] ZAHRA TAGHIYARRENANI, ALI FANIAN, EHSAN MAHDAVI, ABDOLREZA MIRZAEI, AND
HAMED FARSI. Transfer learning based intrusion detection. In 2018 8th International Conference
on Computer and Knowledge Engineering (ICCKE), pages 92–97. IEEE, 2018. 1, 2

[5] EHSAN MAHDAVI, ALI FANIAN, ABDOLREZA MIRZAEI, AND ZAHRA TAGHIYARRENANI. ITL-
IDS: Incremental transfer learning for intrusion detection systems. Knowledge-Based Systems,
253:109542, 2022. 1, 7, 26

[6] HAO GUAN AND MINGXIA LIU. Domain adaptation for medical image analysis: a survey. IEEE
Transactions on Biomedical Engineering, 69(3):1173–1185, 2021. 1

[7] MAHMOUD RAHAT, PEYMAN SHEIKHOLHARAM MASHHADI, SŁAWOMIR NOWACZYK,
THORSTEINN ROGNVALDSSON, ATABAK TAHERI, AND ATAOLLAH ABBASI. Domain Adapta-
tion in Predicting Turbocharger Failures Using Vehicle’s Sensor Measurements. In PHM Society
European Conference, 7, pages 432–439, 2022. 1

[8] YUANTAO FAN, SŁAWOMIR NOWACZYK, AND THORSTEINN RÖGNVALDSSON. Transfer learn-
ing for remaining useful life prediction based on consensus self-organizing models. Reliability
Engineering & System Safety, 203:107098, 2020. 1

[9] ZAHRA TAGHIYARRENANI AND AMIRHOSSEIN BERENJI. Noise-robust representation for fault
identification with limited data via data augmentation. In PHM Society European Conference, 7,
pages 473–479, 2022. 6, 23

[10] ZAHRA TAGHIYARRENANI, SŁAWOMIR NOWACZYK, SEPIDEH PASHAMI, AND MOHAMED-
RAFIK BOUGUELIA. Multi-domain adaptation for regression under conditional distribution
shift. Expert Systems with Applications, 224:119907, 2023. 7

[11] ZAHRA TAGHIYARRENANI AND HAMED FARSI. Domain Adaptation with Maximum Margin
Criterion with application to network traffic classification. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 159–169. Springer Nature Switzerland
Cham, 2022. 8

[12] ZAHRA TAGHIYARRENANI, SŁAWOMIR NOWACZYK, SEPIDEH PASHAMI, AND MOHAMED-
RAFIK BOUGUELIA. Towards Geometry-Preserving Domain Adaptation for Fault Identifica-
tion. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 451–460. Springer Nature Switzerland Cham, 2022. 9

35



[13] ZAHRA TAGHIYARRENANI, SLAWOMIR NOWACZYK, AND SEPIDEH PASHAMI. Analysis of Sta-
tistical Data Heterogeneity in Federated Fault Identification. In PHM Society Asia-Pacific Con-
ference, 4, 2023. 9, 11, 19, 20

[14] SZYMON BOBEK, SŁAWOMIR NOWACZYK, JOAO GAMA, SEPIDEH PASHAMI, RITA P RIBEIRO,
ZAHRA TAGHIYARRENANI, BRUNO VELOSO, LALA RAJAOARISOA, MACIEJ SZELAZEK, AND
GRZEGORZ J NALEPA. Why Industry 5.0 Needs XAI 2.0? 2023. 10

[15] AMIRHOSSEIN BERENJI, ZAHRA TAGHIYARRENANI, AND ABBAS ROHANI BASTAMI. Fault iden-
tification with limited labeled data. Journal of Vibration and Control, page 10775463231164445,
2023. 11

[16] AMIRHOSSEIN BERENJI, ZAHRA TAGHIYARRENANI, AND SŁAWOMIR NOWACZYK. curr2vib:
Modality Embedding Translation for Broken-Rotor Bar Detection. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 423–437. Springer Nature
Switzerland Cham, 2022. 11

[17] AMIRHOSSEIN BERENJI, SŁAWOMIR NOWACZYK, AND ZAHRA TAGHIYARRENANI. Data-Centric
Perspective on Explainability Versus Performance Trade-Off. In International Symposium on
Intelligent Data Analysis, pages 42–54. Springer Nature Switzerland Cham, 2023. 11

[18] JOHN BLITZER, KOBY CRAMMER, ALEX KULESZA, FERNANDO PEREIRA, AND JENNIFER
WORTMAN. Learning bounds for domain adaptation. Advances in neural information processing
systems, 20, 2007. 13, 14

[19] SHAI BEN-DAVID, JOHN BLITZER, KOBY CRAMMER, AND FERNANDO PEREIRA. Analysis of
representations for domain adaptation. Advances in neural information processing systems, 19,
2006. 14

[20] PAU PANAREDA BUSTO AND JUERGEN GALL. Open set domain adaptation. In Proceedings of
the IEEE international conference on computer vision, pages 754–763, 2017. 16

[21] ZHANGJIE CAO, LIJIA MA, MINGSHENG LONG, AND JIANMIN WANG. Partial adversarial do-
main adaptation. In Proceedings of the European conference on computer vision (ECCV), pages
135–150, 2018. 16

[22] QIANG YANG, YANG LIU, TIANJIAN CHEN, AND YONGXIN TONG. Federated machine learn-
ing: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST),
10(2):1–19, 2019. 17

[23] PETER KAIROUZ, H BRENDAN MCMAHAN, BRENDAN AVENT, AURÉLIEN BELLET, MEHDI
BENNIS, ARJUN NITIN BHAGOJI, KALLISTA BONAWITZ, ZACHARY CHARLES, GRAHAM COR-
MODE, RACHEL CUMMINGS, ET AL. Advances and open problems in federated learning. Foun-
dations and Trends® in Machine Learning, 14(1–2):1–210, 2021. 17

[24] LATIF U KHAN, WALID SAAD, ZHU HAN, EKRAM HOSSAIN, AND CHOONG SEON HONG. Fed-
erated learning for internet of things: Recent advances, taxonomy, and open challenges. IEEE
Communications Surveys & Tutorials, 23(3):1759–1799, 2021. 17

[25] MANG YE, XIUWEN FANG, BO DU, PONG C YUEN, AND DACHENG TAO. Heterogeneous fed-
erated learning: State-of-the-art and research challenges. ACM Computing Surveys, 56(3):1–44,
2023. 18, 19, 20

[26] CHENHAO XU, YOUYANG QU, YONG XIANG, AND LONGXIANG GAO. Asynchronous federated
learning on heterogeneous devices: A survey. Computer Science Review, 50:100595, 2023. 18

[27] DASHAN GAO, XIN YAO, AND QIANG YANG. A survey on heterogeneous federated learning.
arXiv preprint arXiv:2210.04505, 2022. 18

36



[28] ALYSA ZIYING TAN, HAN YU, LIZHEN CUI, AND QIANG YANG. Towards personalized feder-
ated learning. IEEE Transactions on Neural Networks and Learning Systems, 2022. 18, 19, 20

[29] ZHUANGDI ZHU, JUNYUAN HONG, AND JIAYU ZHOU. Data-free knowledge distillation for het-
erogeneous federated learning. In International conference on machine learning, pages 12878–
12889. PMLR, 2021. 18

[30] ARTUR BACK DE LUCA, GUOJUN ZHANG, XI CHEN, AND YAOLIANG YU. Mitigating data
heterogeneity in federated learning with data augmentation. arXiv preprint arXiv:2206.09979,
2022.

[31] WENKE HUANG, MANG YE, AND BO DU. Learn from others and be yourself in heterogeneous
federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10143–10153, 2022.

[32] EUNJEONG JEONG, SEUNGEUN OH, HYESUNG KIM, JIHONG PARK, MEHDI BENNIS, AND
SEONG-LYUN KIM. Communication-efficient on-device machine learning: Federated distilla-
tion and augmentation under non-iid private data. arXiv preprint arXiv:1811.11479, 2018.

[33] TEHRIM YOON, SUMIN SHIN, SUNG JU HWANG, AND EUNHO YANG. Fedmix: Approximation
of mixup under mean augmented federated learning. arXiv preprint arXiv:2107.00233, 2021.

[34] MOMING DUAN, DUO LIU, XIANZHANG CHEN, RENPING LIU, YUJUAN TAN, AND LIANG
LIANG. Self-balancing federated learning with global imbalanced data in mobile systems. IEEE
Transactions on Parallel and Distributed Systems, 32(1):59–71, 2020.

[35] QIONG WU, XU CHEN, ZHI ZHOU, AND JUNSHAN ZHANG. Fedhome: Cloud-edge based per-
sonalized federated learning for in-home health monitoring. IEEE Transactions on Mobile Com-
puting, 21(8):2818–2832, 2020. 18

[36] BRENDAN MCMAHAN, EIDER MOORE, DANIEL RAMAGE, SETH HAMPSON, AND
BLAISE AGUERA Y ARCAS. Communication-efficient learning of deep networks from
decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017. 19

[37] SINNO JIALIN PAN, IVOR W TSANG, JAMES T KWOK, AND QIANG YANG. Domain adaptation
via transfer component analysis. IEEE transactions on neural networks, 22(2):199–210, 2010. 24

[38] YAROSLAV GANIN, EVGENIYA USTINOVA, HANA AJAKAN, PASCAL GERMAIN, HUGO
LAROCHELLE, FRANÇOIS LAVIOLETTE, MARIO MARCHAND, AND VICTOR LEMPITSKY.
Domain-adversarial training of neural networks. The journal of machine learning research,
17(1):2096–2030, 2016. 24

[39] MINGSHENG LONG, YUE CAO, JIANMIN WANG, AND MICHAEL JORDAN. Learning transferable
features with deep adaptation networks. In International conference on machine learning, pages
97–105. PMLR, 2015. 24

[40] ERIC TZENG, JUDY HOFFMAN, KATE SAENKO, AND TREVOR DARRELL. Adversarial discrimi-
native domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7167–7176, 2017. 24

[41] MINGSHENG LONG, JIANMIN WANG, GUIGUANG DING, JIAGUANG SUN, AND PHILIP S YU.
Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2200–2207, 2013. 24

[42] MINGSHENG LONG, JIANMIN WANG, GUIGUANG DING, SINNO JIALIN PAN, AND S YU PHILIP.
Adaptation regularization: A general framework for transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 26(5):1076–1089, 2013. 24

[43] MINGSHENG LONG, HAN ZHU, JIANMIN WANG, AND MICHAEL I JORDAN. Deep transfer learn-
ing with joint adaptation networks. In International conference on machine learning, pages 2208–
2217. PMLR, 2017. 24

37





FRO
M

 D
O

M
A

IN
 A

D
A

PTAT
IO

N
 TO

 FED
ER

AT
ED

 LEA
R

N
IN

G
H

alm
stad 2024

Halmstad University  | School of Information Technology
DoctoralThesis | Halmstad University Dissertations no. 107

D O C T O R A L  T H E S I S

ISBN: 978-91-89587-28-1 (printed)
Halmstad University Dissertations, 2024

School of Information Technology

Z
A

H
R

A
 TA

G
H

IYA
R

R
EN

A
N

I

From Domain Adaptation to 
Federated Learning

Zahra Taghiyarrenani


	Abstract
	Acknowledgements
	List of Papers
	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Challenges and research questions
	1.3 Summary of papers and Authors' contribution

	2 Background
	2.1 Domain Adaptation
	2.2 Federated Learning

	3 Summary of the methods proposed in the papers
	4 Conclusion and future work directions
	References
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI
	Paper VII
	Paper VIII
	Paper IX
	Paper X



