hh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lerin, Tommy
    Halmstad University, School of Business and Engineering (SET).
    Förutsättningar och Avsättningar för Biogas för Gröna Vessigebro: Version 1.02014Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The community Vessigebro, in Falkenberg and its surrounding areas housing one percent of all dairy cattle and two percent of all pigs in Sweden. This means that there is a large amount of manure as a basis for producing biogas in the area. A number of farmers have therefore formed a cooperative named Vessigebro biogas and started the project Green Vessigebro, with the goal of creating the conditions for a more profitable and more sustainable agriculture production.

    The study deals with the conditions and sale opportunities of the feasibility study Green Vessigebro. The study has looked at the work that was previously carried out for the biogas that could be produced on the farms in Vessigebro, The main pipeline for natural gas on the Swedish west coast and its operators, the Swedish Competition Act , Electricity Act , Natural Gas Act, the District Heating Act , Sustainability Act , previously proposed measures, municipality interest in biogas from Vessigebro , possible collaborations, possible sale opportunities and perform calculations with data from the municipality Ljungby for a suggested transportation of biogas between Vessigebro and Ljungby.

    The study shows that there are several interesting sale opportunities for biogas from Vessigebro. The production and use of biogas in Sweden is increasing and the trend seems set to continue. Six gas retailers can buy gas, which EON is the most established around Vessigebro with a distribution network. EON: s distribution network runs only a few kilometers from the planned upgrading plant , in Vessigebro. An already built upgrading facility is one mil from Vessigebro. Swedegas is the only main pipeline network owner with storing and balancing responsibility on the main line that is closer than EON distribution network. A number of suppliers and industries have shown interest in purchasing the biogas and the interest from potential buyers are likely to increase when the biogas production starts. A collaboration with, for example, "Arena Bioenergy Halland" increases business intelligence and can provide an increased influence with policy proposals. The use of gas and the interest is too low for the moment for tractors, boats, trains, buses and taxis to be a possible outlet specifically for Vessigebro biogas.

    The conditions make it interesting for Vessigebro biogas to look at five different options for sale opportunities of the biogas. Three options are based on a pipeline to either the pipeline, owned by Swedegas or EON distribution line alternatively a pipeline to EON upgrading facility. One possibility is to replace vehicles that run on fossil fuels with gas-powered vehicles providing a local use and purpose and the aims of the project Green Vessigebro. The calculations made by the study with different conditions shows that a very interesting and possible sale opportunity is a transportation of biogas between Vessigebro and Ljungby.

    The conclusion from the study shows that conditions and sale opportunities are good for the planned biogas production of Green Vessigebro to become reality.

  • 2.
    Wu, Yi Ning
    et al.
    Halmstad University, School of Business, Engineering and Science. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
    Mattsson, Marie
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Ding, Min Wei
    Halmstad University, School of Business, Engineering and Science. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
    Wu, Meng T.
    School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
    Mei, Juan
    School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
    Shen, Yao Liang
    School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
    Effects of Different Pretreatments on Improving Biogas Production of Macroalgae Fucus Vesiculosus and Fucus Serratus in Baltic Sea2019In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 33, no 3, p. 2278-2284Article in journal (Refereed)
    Abstract [en]

    Global warming along with energy demand and rising prices of natural energy resources have motivated studies to find some renewable and clean energy. The use of algae as the third-generation biofuel can avoid the competition for farmland, and algae can be considered as a potential future source of renewable energy. Algae can be used for biogas production through anaerobic digestion (AD). Fucus vesiculosus and Fucus serratus are the two dominating species of brown seaweed growing in the Baltic Sea in the southwest of Sweden. Pretreatment can significantly affect the biogas production because hydrolysis of the algae cell wall structure is a rate-limiting step in the AD process. In this study, four different pretreatments: mechanical, microwave (600 W, 2 min), ultrasonic (110 V, 15 min), and microwave combined with ultrasonic (600 W, 2 min; 110 V, 15 min) were applied to the seaweed and then codigested with a biogas plant leachate. The aim of this study was to investigate methane yields from AD after these pretreatments. The results showed that when compared with only mechanical pretreatment, the ultrasonic, ultrasonic combined with microwave, and microwave pretreatments could obtain increased cumulative methane yields of 167, 185, and 156%, respectively. The combined pretreatment showed a maximum methane yield of 260 mL/g·of volatile solids after 20 days of digestion. The ultrasonic combined with microwave pretreatment showed a significant improvement in methane yield when compared with the mechanical pretreatment. Copyright © 2019 American Chemical Society

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf