hh.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cameron, J.
    et al.
    DiLab i Lund AB.
    Jacobson, C.
    AstraZeneca R and D.
    Nilsson, Kenneth
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Rögnvaldsson, Thorsteinn
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    A biometric approach to laboratory rodent identification2007In: Lab animal, ISSN 0093-7355, E-ISSN 1548-4475, Vol. 36, no 3, p. 36-40Article in journal (Refereed)
    Abstract [en]

    Individual identification of laboratory rodents typically involves invasive methods, such as tattoos, ear clips, and implanted transponders. Beyond the ethical dilemmas they may present, these methods may cause pain or distress that confounds research results. The authors describe a prototype device for biometric identification of laboratory rodents that would allow researchers to identify rodents without the complications of other methods. The device, which uses the rodent's ear blood vessel pattern as the identifier, is fast, automatic, noninvasive, and painless.

  • 2.
    Verikas, Antanas
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Bacauskiene, Marija
    Department of Applied Electronics, Kaunas University of Technology, Studentu 50, LT-3031, Kaunas, Lithuania.
    Malmqvist, Kerstin
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Selecting salient features for classification committees2003In: Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 / [ed] Kaynak, O Alpaydin, E Oja, E Xu, L, Heidelberg: Springer Berlin/Heidelberg, 2003, Vol. 2714, p. 35-42Conference paper (Refereed)
    Abstract [en]

    We present a neural network based approach for identifying salient features for classification in neural network committees. Our approach involves neural network training with an augmented cross-entropy error function. The augmented error function forces the neural network to keep low derivatives of the transfer functions of neurons of the network when learning a classification task. Feature selection is based on two criteria, namely the reaction of the cross-validation data set classification error due to the removal of the individual features and the diversity of neural networks comprising the committee. The algorithm developed removed a large number of features from the original data sets without reducing the classification accuracy of the committees. By contrast, the accuracy of the committees utilizing the reduced feature sets was higher than those exploiting all the original features. © Springer-Verlag Berlin Heidelberg 2003.

  • 3.
    Verikas, Antanas
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Lipnickas, Arunas
    Kaunas University of Technology, Department of Applied Electronics, Studentu 50, 3031, Kaunas, Lithuania.
    Malmqvist, Kerstin
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Selecting neural networks for making a committee decision2002In: ARTIFICIAL NEURAL NETWORKS - ICANN 2002 / [ed] Dorronsoro, J R, Berlin: Springer Berlin/Heidelberg, 2002, Vol. 2415, p. 420-425Conference paper (Refereed)
    Abstract [en]

    To improve recognition results, decisions of multiple neural networks can be aggregated into a committee decision. In contrast to the ordinary approach of utilizing all neural networks available to make a committee decision, we propose creating adaptive committees, which are specific for each input data point. A prediction network is used to identify classification neural networks to be fused for making a committee decision about a given input data point. The jth output value of the prediction network expresses the expectation level that the jth classification neural network will make a correct decision about the class label of a given input data point. The effectiveness of the approach is demonstrated on two artificial and three real data sets.

  • 4.
    You, Liwen
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Computational prediction models for proteolytic cleavage and epitope identification2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The biological functions of proteins depend on their physical interactions with other molecules, such as proteins and peptides. Therefore, modeling the protein-ligand interactions is important for understanding protein functions in different biological processes. We have focused on the cleavage specificities of HIV-1 protease, HCV NS3 protease and caspases on short oligopeptides or in native proteins; the binding affinity of MHC molecules with short oligopeptides and identification of T cell epitopes. we expect that our findings on HIV-1 protease, HCV NS3 protease and caspases generalize to other proteases. In this thesis, we have performed analysis on these interactions from different perspectives - we have extended and collected new substrate data sets; used and compared different prediction methods (e.g. linear support vector machines, neural networks, OSRE method, rough set theory and Gaussian processes) to understand the underlying interaction problems; suggested new methods (i.e. a hierarchical method and Gaussian processes with test reject method) to improve predictions; and extracted cleavage rules for protease cleavage specificities. From our studies, we have extended oligopeptide substrate data sets and collected native protein substrates for HIV-1 protease, and a new oligopeptide substrate data set for HCV protease. We have shown that all current HIV-1 protease oligopeptide substratde data sets and our HCV data set are linearly separable; for HIV-1 protease, size and hydrophobicity are two important physicochemical properties in the recognition of short oligopeptide substrates to the protease; and linear support vector mahine is the state-of-the-art for this protease cleavage prediction problem. Our hierarchical method combining protein secondary structure information and experimental short oligopeptide cleavage information an improve the prediction of HIV-1 protease cleavage sites in native proteins. Our rule extraction method provides simple an accurate cleavage rules with high fidelity for HIV-1 and HCV proteases. For MHC molecules, we showed that high binding affinities are not necessarily correlated to immunogenicity on HLA-restricted peptides. Our test reject method combined with Gaussian processes can simplify experimental design by reducing false positives for detecting potential epitopes in large pathogen genomes.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf