hh.sePublications
Change search
Refine search result
3456 251 - 254 of 254
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 251.
    Zeng, Yingfu
    et al.
    Rice University, Houston, USA.
    Chad, Rose
    Rice University, Houston, USA.
    Taha, Walid
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Rice University, Houston, USA.
    Duracz, Adam
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Atkinson, Kevin
    Rice University, Houston, USA.
    Philippsen, Roland
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Cartwright, Robert
    Rice University, Houston, USA.
    O'Malley, Marcia
    Rice University, Houston, USA.
    Modeling Electromechanical Aspects of Cyber-Physical Systems2016In: Journal of Software Engineering for Robotics, ISSN 2035-3928, E-ISSN 2035-3928, Vol. 7, no 1, p. 100-119Article in journal (Refereed)
    Abstract [en]

    Model-based tools have the potential to significantly improve the process of developing novel cyber-physical systems (CPS). In this paper, we consider the question of what language features are needed to model such systems. We use a small, experimental hybrid systems modeling language to show how a number of basic and pervasive aspects of cyber-physical systems can be modeled concisely using the small set of language constructs. We then consider four, more complex, case studies from the domain of robotics. The first, a quadcopter, illustrates that these constructs can support the modeling of interesting systems. The second, a serial robot, provides a concrete example of why it is important to support static partial derivatives, namely, that it significantly improves the way models of rigid body dynamics can be expressed. The third, a linear solenoid actuator, illustrates the language’s ability to integrate multiphysics subsystems. The fourth and final, a compass gait biped, shows how a hybrid system with non-trivial dynamics is modeled. Through this analysis, the work establishes a strong connection between the engineering needs of the CPS domain and the language features that can address these needs. The study builds the case for why modeling languages can be improved by integrating several features, most notably, partial derivatives, differentiation without duplication, and support for equations. These features do not appear to be addressed in a satisfactory manner in mainstream modeling and simulation tools.

  • 252.
    Zeng, Yingfu
    et al.
    Rice University, Houston, USA.
    Rose, Chad
    Rice University, Houston, USA.
    Brauner, Paul
    Rice University, Houston, USA.
    Taha, Walid
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Rice University, Houston, USA.
    Masood, Jawad
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research. Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Philippsen, Roland
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    O’Malley, Marcia
    Rice University, Houston, USA.
    Cartwright, Robert
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS). Rice University, Houston, USA.
    Modeling Basic Aspects of Cyber-Physical Systems, Part II2013In: Proceedings DSLRob 2013 / [ed] Christian Schlegel, Ulrik Pagh Schultz, Serge Stinckwich, 2013Conference paper (Refereed)
    Abstract [en]

    We consider the question of what language features are needed to effectively model cyber-physical systems (CPS). In previous work, we proposed a core language called Acumen as a way to study this question, and showed how several basic aspects of CPS can be modeled clearly in a language with a small set of constructs. This paper reports on the result of our analysis of two more complex case studies from the domain of rigid body dynamics. The first one, a quadcopter, illustrates that Acumen can support larger, more interesting systems than previously shown. The second one, a serial robot, provides a concrete example of why explicit support for static partial derivatives can significantly improve the expressivity of a CPS modeling language.

  • 253.
    Zeng, Yingfu
    et al.
    Rice University, Houston, TX, USA.
    Rose, Chad
    Rice University, Houston, TX, USA.
    Brauner, Paul
    Rice University, Houston, TX, USA.
    Taha, Walid
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Rice University, Houston, TX, USA.
    Masood, Jawad
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Philippsen, Roland
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    O'Malley, Marcia
    Rice University, Houston, TX, USA.
    Cartwright, Robert
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Rice University, Houston, TX, USA.
    Modeling Basic Aspects of Cyber-Physical Systems, Part II (Extended Abstract)2014In: 2014 IEEE International Conference on High Performance Computing and Communications, 2014 IEEE 6th International Symposium on Cyberspace Safety and Security, 2014 IEEE 11th International Conference on Embedded Software and Systems (HPCC, CSS, ICESS) / [ed] Randall Bilof, Piscataway, NJ: IEEE Computer Society, 2014, p. 550-557Conference paper (Refereed)
    Abstract [en]

    We continue to consider the question of what language features are needed to effectively model cyber-physical systems (CPS). In previous work, we proposed using a core language as a way to study this question, and showed how several basic aspects of CPS can be modeled clearly in a language with a small set of constructs. This paper reports on the result of our analysis of two, more complex, case studies from the domain of rigid body dynamics. The first one, a quadcopter, illustrates that previously proposed core language can support larger, more interesting systems than previously shown. The second one, a serial robot, provides a concrete example of why we should add language support for static partial derivatives, namely that it would significantly improve the way models of rigid body dynamics can be expressed. © 2014 IEEE.

  • 254.
    Zhang, Man
    et al.
    Institute of Automation Chinese Academy of Sciences, China.
    Liu, Jing
    University of Science and Technology of China, China.
    Sun, Zhenan
    Institute of Automation Chinese Academy of Sciences, China.
    Tan, Tieniu
    Institute of Automation Chinese Academy of Sciences, China.
    Su, Wu
    Zhuhai YiSheng Electronics Technology Co, Ltd, China.
    Alonso-Fernandez, Fernando
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Némesin, Valérian
    Aix-Marseilles University, Centrale Marseille, CNRS, Institut Fresnel, France.
    Othman, Nadia
    Institut Mines-Telecom, Télécom SudParis, France.
    Noda, Koichi
    Nihon System Laboratory, Ltd, Japan.
    Li, Peihua
    Dalian University of Technology, China.
    Hoyle, Edmundo
    University Federal of Rio de Janeiro, Brasil.
    Joshi, Akanksha
    Centre for Development of Advanced Computing, India.
    The First ICB Competition on Iris Recognition2014In: 2014 IEEE International Joint Conference on Biometrics (IJCB), Piscataway, NJ: IEEE Press, 2014, article id 6996292Conference paper (Refereed)
    Abstract [en]

    Iris recognition becomes an important technology in our society. Visual patterns of human iris provide rich texture information for personal identification. However, it is greatly challenging to match intra-class iris images with large variations in unconstrained environments because of noises, illumination variation, heterogeneity and so on. To track current state-of-the-art algorithms in iris recognition, we organized the first ICB∗ Competition on Iris Recognition in 2013 (or ICIR2013 shortly). In this competition, 8 participants from 6 countries submitted 13 algorithms totally. All the algorithms were trained on a public database (e.g. CASIA-Iris-Thousand [3]) and evaluated on an unpublished database. The testing results in terms of False Non-match Rate (FNMR) when False Match Rate (FMR) is 0.0001 are taken to rank the submitted algorithms. © 2014 IEEE.

3456 251 - 254 of 254
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf