hh.sePublications
Change search
Refine search result
123 101 - 103 of 103
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Willander, Magnus
    et al.
    Linköping University, Linköping, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Preface2017In: International Journal of High Speed Electronics and Systems, ISSN 0129-1564, Vol. 26, no 1-2, article id 1702001Article in journal (Refereed)
  • 102.
    Willander, Magnus
    et al.
    Linköping University, Linköping, Sweden.
    Pettersson, HåkanHalmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Special Issue on Scaling and Integration of High Speed Electronics and Optomechanical Systems2017Conference proceedings (editor) (Refereed)
  • 103.
    Wu, Phillip M.
    et al.
    Division of Solid State Physics and the Nanometer Structure Consortium (NmC at LU), Lund University, P.O. Box 118, 221 00 Lund, Sweden.
    Paschoal Jr., Waldomiro
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Kumar, Sandeep
    Division of Solid State Physics and the Nanometer Structure Consortium (NmC at LU), Lund University, P.O. Box 118, 221 00 Lund, Sweden.
    Borschel, Christian
    Institute for Solid State Physics, Jena University, Max-Wien-Platz 1, 07743 Jena, Germany.
    Ronning, Carsten
    Institute for Solid State Physics, Jena University, Max-Wien-Platz 1, 07743 Jena, Germany.
    Canali, Carlo M.
    Division of Physics, School of Computer Science, Linnæus University, 39233 Kalmar, Sweden.
    Samuelson, Lars
    Division of Solid State Physics and the Nanometer Structure Consortium (NmC at LU), Lund University, P.O. Box 118, 221 00 Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Linke, Heiner
    Division of Solid State Physics and the Nanometer Structure Consortium (NmC at LU), Lund University, P.O. Box 118, 221 00 Lund, Sweden.
    Thermoelectric Characterization of Electronic Properties of GaMnAs Nanowires2012In: Journal of Nanotechnology, ISSN 1687-9503, E-ISSN 1687-9511, Vol. 2012, article id 480813Article in journal (Refereed)
    Abstract [en]

    Nanowires with magnetic doping centers are an exciting candidate for the study of spin physics and proof-of-principle spintronics devices. The required heavy doping can be expected to have a significant impact on the nanowires' electron transport properties. Here, we use thermopower and conductance measurements for transport characterization of Ga 0.95Mn 0.05As nanowires over a broad temperature range. We determine the carrier type (holes) and concentration and find a sharp increase of the thermopower below temperatures of 120 K that can be qualitatively described by a hopping conduction model. However, the unusually large thermopower suggests that additional mechanisms must be considered as well. © 2012 Phillip M. Wu et al.

123 101 - 103 of 103
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf