hh.sePublications
Change search
Refine search result
123 101 - 102 of 102
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Varytimidis, Dimitrios
    et al.
    Halmstad University, School of Information Technology.
    Alonso-Fernandez, Fernando
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Englund, Cristofer
    RISE Viktoria, Gothenburg, Sweden.
    Duran, Boris
    RISE Viktoria, Gothenburg, Sweden.
    Action and intention recognition of pedestrians in urban traffic2018In: 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) / [ed] Gabriella Sanniti di Baja, Luigi Gallo, Kokou Yetongnon, Albert Dipanda, Modesto Castrillón-Santana & Richard Chbeir, Piscataway, N.J.: IEEE, 2018, p. 676-682Conference paper (Refereed)
    Abstract [en]

    Action and intention recognition of pedestrians in urban settings are challenging problems for Advanced Driver Assistance Systems as well as future autonomous vehicles to maintain smooth and safe traffic. This work investigates a number of feature extraction methods in combination with several machine learning algorithms to build knowledge on how to automatically detect the action and intention of pedestrians in urban traffic. We focus on the motion and head orientation to predict whether the pedestrian is about to cross the street or not. The work is based on the Joint Attention for Autonomous Driving (JAAD) dataset, which contains 346 videoclips of various traffic scenarios captured with cameras mounted in the windshield of a car. An accuracy of 72% for head orientation estimation and 85% for motion detection is obtained in our experiments.

  • 102.
    Zhang, Man
    et al.
    Institute of Automation Chinese Academy of Sciences, China.
    Liu, Jing
    University of Science and Technology of China, China.
    Sun, Zhenan
    Institute of Automation Chinese Academy of Sciences, China.
    Tan, Tieniu
    Institute of Automation Chinese Academy of Sciences, China.
    Su, Wu
    Zhuhai YiSheng Electronics Technology Co, Ltd, China.
    Alonso-Fernandez, Fernando
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Némesin, Valérian
    Aix-Marseilles University, Centrale Marseille, CNRS, Institut Fresnel, France.
    Othman, Nadia
    Institut Mines-Telecom, Télécom SudParis, France.
    Noda, Koichi
    Nihon System Laboratory, Ltd, Japan.
    Li, Peihua
    Dalian University of Technology, China.
    Hoyle, Edmundo
    University Federal of Rio de Janeiro, Brasil.
    Joshi, Akanksha
    Centre for Development of Advanced Computing, India.
    The First ICB Competition on Iris Recognition2014In: 2014 IEEE International Joint Conference on Biometrics (IJCB), Piscataway, NJ: IEEE Press, 2014, article id 6996292Conference paper (Refereed)
    Abstract [en]

    Iris recognition becomes an important technology in our society. Visual patterns of human iris provide rich texture information for personal identification. However, it is greatly challenging to match intra-class iris images with large variations in unconstrained environments because of noises, illumination variation, heterogeneity and so on. To track current state-of-the-art algorithms in iris recognition, we organized the first ICB∗ Competition on Iris Recognition in 2013 (or ICIR2013 shortly). In this competition, 8 participants from 6 countries submitted 13 algorithms totally. All the algorithms were trained on a public database (e.g. CASIA-Iris-Thousand [3]) and evaluated on an unpublished database. The testing results in terms of False Non-match Rate (FNMR) when False Match Rate (FMR) is 0.0001 are taken to rank the submitted algorithms. © 2014 IEEE.

123 101 - 102 of 102
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf