hh.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Berg, Alexander
    et al.
    Lund University, Lund, Sweden.
    Yazdi, Sadegh
    Technical University of Denmark, Lyngby, Denmark.
    Nowzari, Ali
    Lund University, Lund, Sweden.
    Storm, Kristian
    Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Lund University, Lund, Sweden.
    Vainorius, Neimantas
    Lund University, Lund, Sweden.
    Samuelson, Lars
    Lund University, Lund, Sweden.
    Wagner, Jakob B.
    Technical University of Denmark, Lyngby, Denmark.
    Borgström, Magnus T.
    Lund University, Lund, Sweden.
    Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System2016Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 16, nr 1, s. 656-662Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanowires have the potential to play an important role for next-generation light-emitting diodes. In this work, we present a growth scheme for radial nanowire quantum-well structures in the AlGaInP material system using a GaInP nanowire core as a template for radial growth with GaInP as the active layer for emission and AlGaInP as charge carrier barriers. The different layers were analyzed by X-ray diffraction to ensure lattice-matched radial structures. Furthermore, we evaluated the material composition and heterojunction interface sharpness by scanning transmission electron microscopy energy dispersive X-ray spectroscopy. The electro-optical properties were investigated by injection luminescence measurements. The presented results can be a valuable track toward radial nanowire light-emitting diodes in the AlGaInP material system in the red/orange/yellow color spectrum. © 2015 American Chemical Society.

  • 2.
    Jafari Jam, Reza
    et al.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Kvennefors, Anders
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Graczyk, Mariusz
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Maximov, Ivan
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nanoimprint Lithography and Gold Electroplating for Nanowire Seed Particle Definition2013Konferensbidrag (Refereegranskat)
  • 3.
    Jain, Vishal
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Wallentin, Jesper
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Asoli, Damir
    Sol Voltaics AB, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Processing and Characterization of Nanowire Arrays for Photodetectors2015Ingår i: Nano-Structures for Optics and Photonics: Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion / [ed] Baldassare Di Bartolo, John Collins & Luciano Silvestri, Dordrecht: Springer, 2015, s. 511-512Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a fabrication scheme of contacting arrays of vertically standing nanowires (NW) for LEDs (Duan et al. Nature 409:66–69, 2001), photodetectors (Wang et al. Science (NY) 293:1455–1457, 2001) or solar cell applications (Wallentin et al. Science (NY) 339:1057–1060, 2013). Samples were prepared by depositing Au films using nano-imprint lithography (Må rtensson et al. Nano Lett 4:699–702, 2004) which are used as catalysts for NW growth in a low-pressure metal organic vapour phase epitaxy system where III-V precursors and dopant gases are flown at elevated temperatures which lead to the formation of NWs with different segments (Borgström et al. Nano Res 3:264–270, 2010). An insulating SiO2 layer is then deposited and etched from the top segments of the NWs followed by sputtering of a transparent top conducting oxide and opening up 1 × 1 mm2 device areas through a UV lithography step and etching of the top contact from non-device areas. A second UV lithography step was subsequently carried out to open up smaller windows on the ITO squares for bond pad definition, followed by metallization and lift-off; and the substrate is used as back contact. We also report on the electrical and optical properties of near-infrared p+−i−n+ photodetectors/solar cells based on square millimeter ensembles of InP nanowires grown on InP substrates. The study includes a sample series where the p +-segment length was varied between 0 and 250 nm, as well as solar cell samples with 9.3 % efficiency with similar design. The NWs have a complex modulated crystal structure of alternating wurtzite and zincblende segments, a polytypism that depends on dopant type. The electrical data for all samples display excellent rectifying behavior with an ideality factor of about 2 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p +-segment length. Without p +-segment in the NWs, photogenerated carriers funneled from the substrate into the NWs contribute significantly to the photocurrent. Adding a p +-segment shifts the depletion region up into the i-region of the NWs reducing the substrate contribution to photocurrent while strongly improving the collections of carriers generated in the NWs, in agreement with theoretical modeling (Fig. 48.1). © Springer Science+Business Media Dordrecht 2015.

  • 4.
    Jam, Reza Jafari
    et al.
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Persson, Axel R.
    Lund Univ, Centr & Anal & Synth & NanoLund, POB 124, SE-21100 Lund, Sweden..
    Barrigon, Enrique
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Heurlin, Magnus
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Geijselaers, Irene
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Gomez, Victor J.
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Hultin, Olof
    RISE Res Inst Sweden, Scheelevagen 17, S-22370 Lund, Sweden..
    Samuelson, Lars
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Borgstrom, Magnus T.
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden.;Halmstad Univ, Sch Informat Technol, Box 823, S-30118 Halmstad, Sweden..
    Template-assisted vapour-liquid-solid growth of InP nanowires on (001) InP and Si substrates2020Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 12, nr 2, s. 888-894Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on the synthesis of vertical InP nanowire arrays on (001) InP and Si substrates using template-assisted vapour-liquid-solid growth. A thick silicon oxide layer was first deposited on the substrates. The samples were then patterned by electron beam lithography and deep dry etching through the oxide layer down to the substrate surface. Gold seed particles were subsequently deposited in the holes of the pattern by the use of pulse electrodeposition. The subsequent growth of nanowires by the vapour-liquid-solid method was guided towards the [001] direction by the patterned oxide template, and displayed a high growth yield with respect to the array of holes in the template. In order to confirm the versatility and robustness of the process, we have also demonstrated guided growth of InP nanowire p-n junctions and InP/InAs/InP nanowire heterostructures on (001) InP substrates. Our results show a promising route to monolithically integrate III-V nanowire heterostructure devices with commercially viable (001) silicon platforms.

  • 5.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Hussain, Laiq
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Lindgren, David
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Stehr, Jan Eric
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Buyanova, Irina A.
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Gustafsson, Anders
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors2017Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 6, s. 3356-3362Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n+–i–n+ InP nanowires periodically ordered in arrays. The nanowires were grown by metal–organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 μm and a bias-tunable responsivity reaching 7 A/W@1.38 μm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiOx/ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors. © 2017 American Chemical Society.

  • 6.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Zeng, Xulu
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Witzigmann, Bernd
    Computational Electronics and Photonics Group and CINSaT, University of Kassel, Kassel, Germany.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    High Responsivity of InP/InAsP Nanowire Array Broadband Photodetectors Enhanced by Optical Gating2019Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 19, nr 12, s. 8424-8430Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-performance photodetectors operating in the near-infrared (0.75−1.4 μm) and short-wave infrared (1.4−3.0 μm) portion ofthe electromagnetic spectrum are key components in many optical systems.Here, we report on a combined experimental and theoretical study of squaremillimeter array infrared photodetectors comprising 3 million n+−i−n+ In Pnanowires grown by MOVPE from periodically ordered Au seed particles. Thenominal i-segment, comprising 20 InAs0.40P0.60 quantum discs, was grown byuse of an optimized Zn doping to compensate the nonintentional n-doping.The photodetectors exhibit bias- and power-dependent responsivities reachingrecord-high values of 250 A/W at 980 nm/20 nW and 990 A/W at 532 nm/60nW, both at 3.5 V bias. Moreover, due to the embedded quantum discs, thephotoresponse covers a broad spectral range from about 0.70 to 2.5 eV, ineffect outperforming conventional single InGaAs detectors and dual Si/Gedetectors. The high responsivity, and related gain, results from a novel proposed photogating mechanism, induced by the complex charge carrier dynamics involving optical excitation and recombination in the quantum discs and interface traps, which reduces the electron transport barrier between the highly doped ncontact and the i-segment. The experimental results obtained are in perfect agreement with the proposed theoretical model and represent a significant step forward toward understanding gain in nanoscale photodetectors and realization of commercially viable broadband photon detectors with ultrahigh gain. © 2019 American Chemical Society.

  • 7.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Zeng, Zulu
    Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Witzigmann, Bernd
    Computational Electronics and Photonics Group and CINSaT, University of Kassel, Germany.
    Samuelson, Lars
    Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Borgstrom, Magnus T.
    Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Room temperature high responsivity SWIR/NIR photodetectors based on InAsP/InP NW array heterostructures2019Ingår i: Nanowire Week: Book of Abstracts, 2019, s. 188-188Konferensbidrag (Refereegranskat)
  • 8.
    Kivisaari, Pyry
    et al.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Berg, Alexander
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Karimi, Mohammad
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Storm, Kristian
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Limpert, Steven
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Oksanen, Jani
    Engineered Nanosystems Group, Aalto University, Aalto, Finland.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Optimization of Current Injection in AlGaInP Core−Shell Nanowire Light-Emitting Diodes2017Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 6, s. 3599-3606Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Core–shell nanowires offer great potential to enhance the efficiency of light-emitting diodes (LEDs) and expand the attainable wavelength range of LEDs over the whole visible spectrum. Additionally, nanowire (NW) LEDs can offer both improved light extraction and emission enhancement if the diameter of the wires is not larger than half the emission wavelength (λ/2). However, AlGaInP nanowire LEDs have so far failed to match the high efficiencies of traditional planar technologies, and the parameters limiting the efficiency remain unidentified. In this work, we show by experimental and theoretical studies that the small nanowire dimensions required for efficient light extraction and emission enhancement facilitate significant loss currents, which result in a low efficiency in radial NW LEDs in particular. To this end, we fabricate AlGaInP core–shell nanowire LEDs where the nanowire diameter is roughly equal to λ/2, and we find that both a large loss current and a large contact resistance are present in the samples. To investigate the significant loss current observed in the experiments in more detail, we carry out device simulations accounting for the full 3D nanowire geometry. According to the simulations, the low efficiency of radial AlGaInP nanowire LEDs can be explained by a substantial hole leakage to the outer barrier layer due to the small layer thicknesses and the close proximity of the shell contact. Using further simulations, we propose modifications to the epitaxial structure to eliminate such leakage currents and to increase the efficiency to near unity without sacrificing the λ/2 upper limit of the nanowire diameter. To gain a better insight of the device physics, we introduce an optical output measurement technique to estimate an ideality factor that is only dependent on the quasi-Fermi level separation in the LED. The results show ideality factors in the range of 1–2 around the maximum LED efficiency even in the presence of a very large voltage loss, indicating that the technique is especially attractive for measuring nanowire LEDs at an early stage of development before electrical contacts have been optimized. The presented results and characterization techniques form a basis of how to simultaneously optimize the electrical and optical efficiency of core–shell nanowire LEDs, paving the way to nanowire light emitters that make true use of larger-than-unity Purcell factors and the consequently enhanced spontaneous emission. © 2017American Chemical Society

1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf