The novel coronavirus, 2019-nCoV, has quickly spread across the world and pose serious threat to public health because it can infect people very easily. The major clinical symptoms of 2019-nCoV infection include fever, dry cough, myalgia, fatigue, and diarrhea. The 2019-nCoV belongs to the betacoronavirus family, and gene sequencing results demonstrate that it is a single-stranded RNA virus, closely related to Severe Acute Respiratory Syndrome CoV (SARS-CoV) and Middle East Respiratory Syndrome CoV (MERS-CoV). It has been observed that the virus invades human body mainly through binding to angiotensin-converting enzyme 2 (ACE2) receptors similar to SARS-CoV and the main protease (Mpro) acts as a critical protease for digesting the polyprotein into functional polypeptides during the replication and transcription process of 2019-nCoV. In this review, we summarized the real-time information of 2019-nCoV treatment methods and mainly focused on the chemical drugs including lopinavir/ritonavir, chloroquine, hydroxychloroquine, arbidol, remdesivir, favipiravir and other potential innovative active molecules. Their potential targets, activity, clinical status and side effects are described. In addition, Traditional Chinese Medicine (TCM), Convalescent plasma therapy (CPT) and biological reagents available, as well as the promising vaccine candidates against 2019-nCoV are also discussed.
Pattern recognition receptors (PRRs) are key immune receptors of the innate immune system, which recognize the conserved pathogen-associated molecular patterns (PAMPs) of the invading pathogens. Compared to the adaptive immune receptors, PRRs have three distinguishing features, viz., universal expression, fast response and recognizing many kinds of microbes. Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs) and NOD-like receptors (NLRs) recognize viral nucleic acid/bacterial fragments and trigger anti-microbial innate immune responses. Upon recognition of their ligand species, PRRs recruit specific intracellular adaptor proteins to initiate signaling pathways culminating in the activation of nuclear factor-κB (NF-κB), mitogen-activated protein (MAP) kinases and interferon regulatory factors (IRFs) that control the transcription of genes encoding pro-inflammatory factors including type I interferon and other inflammatory cytokines, which are critical for eliminating the potential threat to the host. Here, we summarize the effects of small molecule regulators acting on signaling pathways initiated by TLR, RLR and NLR as well as their influence on innate and adaptive immune responses leading to therapy. © 2017 Elsevier Masson SAS