hh.sePublikasjoner
Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Adam, Rania E.
    et al.
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Chalangar, Ebrahim
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Högskolan i Halmstad, Akademin för företagande, innovation och hållbarhet, Rydberglaboratoriet för tillämpad naturvetenskap (RLAS). Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Pirhashemi, Mahsa
    Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
    Pozina, Galia
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Liu, Xianjie
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Palisaitis, Justinas
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Department of Sciences and Technology, Linköping University, Norrköping, Sweden & Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Willander, Magnus
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Nur, Omer
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities2019Inngår i: RSC Advances, E-ISSN 2046-2069, Vol. 9, nr 52, s. 30585-30598Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials. © 2019 Elsevier B.V.

  • 2.
    Bhatti, Muhammad Ali
    et al.
    Department of Environmental Sciences University of Sindh Jamshoro, Sindh, Pakistan.
    Shah, Aqeel Ahmed
    NED University of Engineering and Technology Karachi, Pakistan.
    Almani, Khalida Faryal
    Department of Environmental Sciences University of Sindh Jamshoro, Sindh, Pakistan.
    Tahira, Aneela
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Chalangar, Ebrahim
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Chandio, Ali dad
    NED University of Engineering and Technology Karachi, Pakistan.
    Nur, Omer
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Willander, Magnus
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Ibupoto, Zafar Hussain
    Institute of Chemistry University of Sindh Jamshoro, Sindh, Pakistan.
    Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange2019Inngår i: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 45, nr 17, Part B, s. 23289-23297Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, the doped ZnO nanorods with silver (Ag) as photosensitive material are prepared by the solvothermal method. The structural and optical characterization is carried out by the scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and UV–visible spectroscopy. The use of Ag as dopant did not alter the morphology of ZnO except sample 4 which has flower like morphology. The Ag, Zn and O are the main constituent of doped materials. The XRD revealed a hexagonal phase for ZnO and cubic phase for silver and confirmed the successful doping of Ag. The photocatalytic activity of Ag doped ZnO nanorods was investigated for the photo degradation of methyl orange. The photocatalytic measurements show that 88% degradation of methyl orange by the sample 4 within the 2 h of UV light treatment (365 nm) is significant advancement in the photocatalyst and provide the inexpensive and promising materials for the photochemical applications. © 2019 Elsevier Ltd and Techna Group S.r.l.

  • 3.
    Chalangar, Ebrahim
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, Rydberglaboratoriet för tillämpad naturvetenskap (RLAS). Linköping University, Linköping, Sweden.
    Graphene-based nanocomposites for electronics and photocatalysis2019Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The development of future electronics depends on the availability of suitable functional materials. Printed electronics, for example, relies on access to highly conductive, inexpensive and printable materials, while strong light absorption and low carrier recombination rates are demanded in photocatalysis industry. Despite all efforts to develop new materials, it still remains a challenge to have all the desirable aspects in a single material. One possible route towards novel functional materials, with improved and unprecedented physical properties, is to form composites of different selected materials.

    In this work, we report on hydrothermal growth and characterization of graphene/zinc oxide (GR/ZnO) nanocomposites, suited for electronics and photocatalysis application. For conductive purposes, highly Al-doped ZnO nanorods grown on graphene nanoplates (GNPs) prevent the GNPs from agglomerating and promote conductive paths between the GNPs. The effect of the ZnO nanorod morphology and GR dispersity on the nanocomposite conductivity and GR/ZnO nanorod bonding strength were investigated by conductivity measurements and optical spectroscopy. The inspected samples show that growth in high pH solutions promotes a better graphene dispersity, higher doping and enhanced bonding between the GNPs and the ZnO nanorods. Growth in low pH solutions yield samples characterized by a higher conductivity and a reduced number of surface defects.

    In addition, different GR/ZnO nanocomposites, decorated with plasmonic silver iodide (AgI) nanoparticles, were synthesized and analyzed for solar-driven photocatalysis. The addition of Ag/AgI generates a strong surface plasmon resonance effect involving metallic Ag0, which redshifts the optical absorption maximum into the visible light region enhancing the photocatalytic performance under solar irradiation. A wide range of characterization techniques including, electron microscopy, photoelectron spectroscopy and x-ray diffraction confirm a successful formation of photocatalysts.

    Our findings show that the novel proposed GR-based nanocomposites can lead to further development of efficient photocatalyst materials with applications in removal of organic pollutants, or for fabrication of large volumes of inexpensive porous conjugated GR-semiconductor composites.

  • 4.
    Chalangar, Ebrahim
    et al.
    Högskolan i Halmstad. Linköping University, Linköping, Sweden.
    Björk, Emma M.
    Linköping University, Linköping, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi. Linköping University, Linköping, Sweden; Nanolund, Lund, Sweden.
    Electrochemical investigation of carbon paper/ZnO nanocomposite electrodes for capacitive anion capturing2022Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 12, nr 1, artikkel-id 11843Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, we demonstrate an effective anion capturing in an aqueous medium using a highly porous carbon paper decorated with ZnO nanorods. A sol–gel technique was first employed to form a thin and compact seed layer of ZnO nanoparticles on the dense network of carbon fibers in the carbon paper. Subsequently, ZnO nanorods were successfully grown on the pre-seeded carbon papers using inexpensive chemical bath deposition. The prepared porous electrodes were electrochemically investigated for improved charge storage and stability under long-term operational conditions. The results show effective capacitive deionization with a maximum areal capacitance of 2 mF/cm2, an energy consumption of 50 kJ per mole of chlorine ions, and an excellent long-term stability of the fabricated C-ZnO electrodes. The experimental results are supported by COMSOL simulations. Besides the demonstrated capacitive desalination application, our results can directly be used to realize suitable electrodes for energy storage in supercapacitors. © 2022, The Author(s).

    Fulltekst (pdf)
    fulltext
  • 5.
    Chalangar, Ebrahim
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Linköping University, Norrköping, Sweden.
    Machhadani, Houssaine
    Linköping University, Linköping, Sweden.
    Lim, Seung-Hyuk
    Linköping University, Linköping, Sweden.
    Karlsson, K. Fredrik
    Linköping University, Linköping, Sweden.
    Nur, Omer
    Linköping University, Norrköping, Sweden.
    Willander, Magnus
    Linköping University, Norrköping, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Linköping University, Norrköping, Sweden & Lund University, Lund, Sweden.
    Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites2018Inngår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 29, nr 41, artikkel-id 415201Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The development of future 3D-printed electronics relies on the access to highly conductive inexpensive materials that are printable at low temperatures (<100 C). The implementation of available materials for these applications are, however, still limited by issues related to cost and printing quality. Here, we report on the simple hydrothermal growth of novel nanocomposites that are well suited for conductive printing applications. The nanocomposites comprise highly Al-doped ZnO nanorods grown on graphene nanoplatelets (GNPs). The ZnO nanorods play the two major roles of (i) preventing GNPs from agglomerating and (ii) promoting electrical conduction paths between the graphene platelets. The effect of two different ZnO-nanorod morphologies with varying Al-doping concentration on the nanocomposite conductivity and the graphenedispersity are investigated. Time-dependent absorption, photoluminescence and photoconductivity measurements show that growth in high pH solutions promotes a better graphene dispersity, higher doping levels and enhanced bonding between the graphene and the ZnO nanorods. Growth in low pH solutions yields samples characterized by a higher conductivity and a reduced number of surface defects. These samples also exhibit a large persistent photoconductivity attributed to an effective charge separation and transfer from the nanorods to the graphene platelets. Our findings can be used to tailor the conductivity of novel printable composites, or for fabrication of large volumes of inexpensive porous conjugated graphene-semiconductor composites. © 2018 IOP Publishing Ltd.

    Fulltekst (pdf)
    fulltext
  • 6.
    Chalangar, Ebrahim
    et al.
    Högskolan i Halmstad. Linköping University, Linkoping, Sweden.
    Mustafa, Elfatih
    Linköping University, Linkoping, Sweden.
    Nur, Omer
    Linköping University, Linkoping, Sweden.
    Willander, Magnus
    Linköping University, Linkoping, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi. Linköping University, Linkoping, Sweden; Nanolund, Lund, Sweden.
    Nanopatterned rGO/ZnO: Al seed layer for vertical growth of single ZnO nanorods2023Inngår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 34, nr 25, s. 1-7, artikkel-id 255301Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, we demonstrate a novel low-cost template-assisted route to synthesize vertical ZnO nanorod arrays on Si (100). The nanorods were grown on a patterned double seed layer comprised of reduced graphene oxide (rGO) and Al-doped ZnO nanoparticles. The seed layer was fabricated by spray-coating the substrate with graphene and then dip-coating it into a Al-doped ZnO sol-gel solution. The growth template was fabricated from a double-layer resist, spin-coated on top of the rGO/ZnO:Al seed layer, and patterned by colloidal lithography. The results show a successful chemical bath deposition of vertically aligned ZnO nanorods with controllable diameter and density in the nanoholes in the patterned resist mask. Our novel method can presumably be used to fabricate electronic devices on virtually any smooth substrate with a thermal budget of 1 min at 300 °C with the seed layer acting as a conductive strain-relieving back contact. The top contact can simply be made by depositing a suitable transparent conductive oxide or metal, depending on the specific application. © 2023 The Author(s). Published by IOP Publishing Ltd.

  • 7.
    Chalangar, Ebrahim
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Department of Science and Technology, Linköping University, Norrköping, Sweden.
    Nur, Omer
    Department of Science and Technology, Linköping University, Norrköping, Sweden.
    Willander, Magnus
    Department of Science and Technology, Linköping University, Norrköping, Sweden.
    Gustafsson, Anders
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Department of Science and Technology, Linköping University, Norrköping, Sweden & Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Synthesis of Vertically Aligned ZnO Nanorods Using Sol-gel Seeding and Colloidal Lithography Patterning2021Inngår i: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 16, nr 1, artikkel-id 46Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Different ZnO nanostructures can be grown using low-cost chemical bath deposition. Although this technique is cost-efficient and flexible, the final structures are usually randomly oriented and hardly controllable in terms of homogeneity and surface density. In this work, we use colloidal lithography to pattern (100) silicon substrates to fully control the nanorods' morphology and density. Moreover, a sol-gel prepared ZnO seed layer was employed to compensate for the lattice mismatch between the silicon substrate and ZnO nanorods. The results show a successful growth of vertically aligned ZnO nanorods with controllable diameter and density in the designated openings in the patterned resist mask deposited on the seed layer. Our method can be used to fabricate optimized devices where vertically ordered ZnO nanorods of high crystalline quality are crucial for the device performance. © 2021 BioMed Central Ltd

  • 8.
    Shah, Aqeel Ahmed
    et al.
    NED University of Engineering and Technology, Karachi, Pakistan.
    Bhatti, Muhammad Ali
    Department of Environmental Sciences, University of Sindh, Jamshoro, Pakistan.
    Tahira, Aneela
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Chandio, Ali Dad
    NED University of Engineering and Technology, Karachi, Pakistan.
    Channa, Iftikhar A.
    NED University of Engineering and Technology, Karachi, Pakistan.
    Sahito, Ali Ghulam
    Centre for Pure and Applied Geology, University of Sindh, Jamshoro, Pakistan.
    Chalangar, Ebrahim
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Willander, Magnus
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Nur, Omer
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Ibupoto, Zafar Hussain
    Centre for Pure and Applied Geology, University of Sindh, Jamshoro, Pakistan.
    Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange2020Inngår i: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 46, nr 8, part A, s. 9997-10005Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, zinc oxide (ZnO) nanorods are doped with copper by low temperature aqueous chemical growth method using different concentrations of copper 5 mg, 10 mg, 15 mg and 20 mg and labeled as sample 1, 2, 3 and 4 respectively. The morphology and phase purity of nanostructures was investigated by scanning electron microscopy, and powder X-ray diffraction techniques. The optical characterization was carried out through UV–Vis spectrophotometer. The band gap of coper doped ZnO has brought reduction at 250–600 nm and it indicates the fewer time for the recombination of electron and hole pairs, thus enhanced photo degradation efficiency is found. ZnO exhibits nanorods like shape even after the doping of copper. The photo degradation efficiency for the two chronic dyes such as methyl orange MO and methylene blue MB was found to be 57.5% and 60% respectively for a time of 180 mints. This study suggests that the copper impurity in ZnO can tailor its photocatalytic activity at considerable rate. The proposed photo catalysts are promising and can be used for the waste water treatment and other environmental applications. © 2019 Elsevier Ltd and Techna Group S.r.l.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf