hh.sePublikasjoner
Endre søk
Begrens søket
123 1 - 50 of 101
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Adam, Rania E.
    et al.
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Chalangar, Ebrahim
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Pirhashemi, Mahsa
    Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
    Pozina, Galia
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Liu, Xianjie
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Palisaitis, Justinas
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Department of Sciences and Technology, Linköping University, Norrköping, Sweden & Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Willander, Magnus
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Nur, Omer
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities2019Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, nr 52, s. 30585-30598Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials. © 2019 Elsevier B.V.

  • 2.
    Aghaeipour, Mahtab
    et al.
    Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Lund University, Lund, Sweden.
    Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors2018Inngår i: Nanophotonics, E-ISSN 2192-8614, Vol. 7, nr 5, s. 819-825Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A near-unity unselective absorption spectrum is desirable for high-performance photovoltaics. Nanowire arrays are promising candidates for efficient solar cells due to nanophotonic absorption resonances in the solar spectrum. The absorption spectra, however, display undesired dips between the resonance peaks. To achieve improved unselective broadband absorption, we propose to enclose distributed Bragg reflectors (DBRs) in the bottom and top parts of indium phosphide (InP) nanowires, respectively. We theoretically show that by enclosing only two periods of In0.56Ga0.44As/InPDBRs, an unselective 78% absorption efficiency (72% for nanowires without DBRs)is obtained at normal incidence in the spectral range from 300 nm to 920 nm. Under oblique light incidence, the absorption efficiency is enhanced up to about 85% at an incidence angle of 50º. By increasing the number of DBR periods from two to five, the absorption efficiency is further enhanced up to 95% at normal incidence. In this work we calculated optical spectra for InP nanowires, but the results are expected to be valid for other direct band gap III-V semiconductor materials. We believe that our proposed idea of integrating DBRs in nanowires offers great potential for high-performance photovoltaic applications. ©2018 Håkan Pettersson et al., published by De Gruyter, Berlin/Boston.

  • 3.
    Aghaeipour, Mahtab
    et al.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS).
    Enhanced optical absorption in nanowires over a desire range of wavelengths2017Inngår i: MOC2017 : technical digest of the Twenty-Second Microoptics Conference: November 19-22, 2017, Institute of Industrial Science, The University of Tokyo, Japan, 2017, Vol. 2017-November, s. 360-361Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Engineering optical absorption in nanowires, over a desire range of wavelengths is of importance to design high-performance nanowire-based photovoltaics. To this end, we integrate the nanowires with distributed Bragg reflectors to enhance absorption spectra of the nanowires and relate the consequent enhancement to increasing the optical path lengths of the modes. © 2017 The Japan Society of Applied Physics.

  • 4.
    Aghaeipour, Mahtab
    et al.
    Lund University, Lund, Sweden.
    Pistol, Mats-Erik
    Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Lund University, Lund, Sweden.
    Comparative study of absorption efficiency of inclined and vertical InP nanowires2017Inngår i: Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VI / [ed] A. Freundlich, L. Lombez, M. Sugiyama, Bellingham, WA: SPIE - International Society for Optical Engineering, 2017, Vol. 10099, artikkel-id UNSP 100990SKonferansepaper (Fagfellevurdert)
    Abstract [en]

    Geometrically designed III-V nanowire arrays are promising candidates for optoelectronics due to their possibility to excite nanophotonic resonances in absorption spectra. Strong absorption resonances can be obtained by proper tailoring of nanowire diameter, length and pitch. Such enhancement of the light absorption is, however, accompanied by undesired resonance dips at specific wavelengths. In this work, we theoretically show that tilting of the nanowires mitigates the absorption dips by exciting strong Mie resonances. In particular, we derive a theoretical optimum inclination angle of about 30 degrees at which the inclined nanowires gain 8% in absorption efficiency compared to vertically standing nanowires in a spectral region matching the intensity distribution of the sun. The enhancement is due to engineering the excited modes inside the nanowires regarding the symmetry properties of the nanowire/light system without increasing the absorbing material. We expect our results to be important for nanowire-based photovoltaic applications. © 2017 SPIE.

  • 5.
    Aghaeipour, Mahtab
    et al.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pistol, Mats-Erik
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Considering Symmetry Properties of InP Nanowire/Light Incidence Systems to Gain Broadband Absorption2017Inngår i: IEEE Photonics Journal, ISSN 1097-5764, E-ISSN 1943-0655, Vol. 9, nr 3, artikkel-id 4501310Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Geometrically designed III-V nanowire arrays are promising candidates for disruptive optoelectronics due to the possibility of obtaining a strongly enhanced absorption resulting from nanophotonic resonance effects. With normally incident light on such vertical nanowire arrays, the absorption spectra exhibit peaks that originate from excitation of HE1m waveguide modes in the constituent nanowires. However, the absorption spectra typically show dips between the absorption peaks. Conventionally, such weak absorption has been counteracted by either making the nanowires longer or by decreasing the pitch of the array, both alternatives effectively increasing the volume of absorbing material in the array. Here, we first study two approaches for compensating the absorption dips by exciting additional Mie resonances: 1) oblique light incidence on vertical InP nanowire arrays and 2) normal light incidence on inclined InP nanowire arrays. We then show that branched nanowires offer a novel route to achieve broadband absorption by taking advantage of simultaneous excitations of Mie resonances in the branches and guided HE1m modes in the stem. Finite element method calculations show that the absorption efficiency is enhanced from 0.72 for vertical nanowires to 0.78 for branched nanowires under normal light incidence. Our work provides new insight for the development of novel efficient photovoltaics with high efficiency and reduced active material volume.

  • 6.
    Anokhina, Ksenia
    et al.
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Lund, Sweden.
    Graczyk, Mariousz
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Lund, Sweden.
    Kvennefors, Anders
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Lund, Sweden.
    Montelius, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Lund, Sweden.
    Maximov, Ivan
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Metal-assisted chemical etching of Si for fabrication of nanoimprint stamps2011Konferansepaper (Fagfellevurdert)
  • 7.
    Bordag, Michael
    et al.
    Leipzig University, Institute for Theoretical Physics, Leipzig, Germany.
    Jede, Ralf
    Raith GmbH, Dortmund, Germany.
    Montelius, Lars
    Lunds University, Physics Department, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Riu, Jordi
    University Rovira i Vergili, Taragona, Spain.
    Schmucker, Ulrich
    University Rovira i Vergili, Taragona, Spain.
    Zubtsov, Michael
    Fraunhofer Institute for Factory Automation, Magdeburg, Germany.
    Parallel nano-assembly directed by short-range field forces2006Inngår i: Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Piscataway, United States: IEEE Press, 2006, s. 620-622, artikkel-id 4135031Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We present the ECs Sixth Framework Programme PARNASS project, which stands for 'Parallel nano assembling directed by short-range field forces' and represents a radical innovative approach to fabricating large volumes of hybrid nano electronic devices. The project combines in a synergy the 'top-down' and 'bottom-up' methods addressing one of the challenging physical and engineering problems of the very high accuracy over a large area. An array of specially designed nano-scale force field sources has to be a key part of this innovative approach to large-scale nano manufacturing. © 2006 IEEE.

  • 8.
    Bordag, Michael
    et al.
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (CAMP).
    Ribayrol, Aline
    Lund University.
    Conache, Gabriela
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (CAMP).
    Fröberg, Linus E.
    Lund University.
    Gray, Struan
    Lund University.
    Samuelson, Lars
    Lund University.
    Montelius, Lars
    Lund University.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (CAMP).
    Shear stress measurements on InAs nanowires by AFM manipulation2007Inngår i: Small, ISSN 1613-6810, Vol. 3, nr 8, s. 1398-1401Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    On an upward curve? The curvature of an elastically deformed nanowire pinned to a flat surface contains information about the maximum static friction force, and hence the shear stress, between the nanowire and the surface. Here, InAs nanowires are bent in a controlled manner using the tip of an atomic force microscope (see image). The shear stress can be obtained from a simple analysis according to the standard theory of elasticity.

  • 9.
    Borschel, Christian
    et al.
    Institute for Solid State Physics, Jena University, Max-Wien-Platz 1, 07743 Jena, Germany.
    Messing, Maria
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Borgström, Magnus T.
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Paschoal, Waldomiro
    Avd. f. Fasta tillståndets fysik, Lunds Universitet / Tillämpad matematik och fysik (MPE-lab), MPE-lab.
    Wallentin, Jesper
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Kumar, Sandeep
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Mergenthaler, Kilian
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Deppert, Knut
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Canali, C. M.
    Högskolan i Kalmar.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Samuelson, Lars
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Ronning, Carsten
    Institute for Solid State Physics, Jena University, Max-Wien-Platz 1, 07743 Jena, Germany.
    A New Route toward Semiconductor Nanospintronics: Highly Mn-Doped GaAs Nanowires Realized by Ion-Implantation under Dynamic Annealing Conditions2011Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 11, nr 9, s. 3935-3940Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report on highly Mn-doped GaAs nanowires (NWs) of high crystalline quality fabricated by ion beam implantation, a technique that allows doping concentrations beyond the equilibrium solubility limit. We studied two approaches for the preparation of Mn-doped GaAs NWs: First, ion implantation at room temperature with subsequent annealing resulted in polycrystalline NWs and phase segregation of MnAs and GaAs. The second approach was ion implantation at elevated temperatures. In this case, the single-crystallinity of the GaAs NWs was maintained, and crystalline, highly Mn-doped GaAs NWs were obtained. The electrical resistance of such NWs dropped with increasing temperature (activation energy about 70 meV). Corresponding magnetoresistance measurements showed a decrease at low temperatures, indicating paramagnetism. Our findings suggest possibilities for future applications where dense arrays of GaMnAs nanowires may be used as a new kind of magnetic material system.

  • 10.
    Borschel, Christian
    et al.
    Institute for Solid State Physics, University of Jena, Jena, Germany.
    Messing, Maria
    Lund University, Lund, Sweden.
    Mergenthaler, Kilian
    Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Lund University, Lund, Sweden.
    Paschoal, Waldomiro
    Lund University, Lund, Sweden.
    Wallentin, Jesper
    Lund University, Lund, Sweden.
    Kumar, Sandeep
    Lund University, Lund, Sweden.
    Deppert, Knut
    Lund University, Lund, Sweden.
    Canali, Carlo
    Linnaeus University, Kalmar, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Samuelson, Lars
    Lund University, Lund, Sweden.
    Ronning, Carsten
    Institute for Solid State Physics, University of Jena, Jena, Germany.
    A New Route towards Semiconductor Nanospintronics: Highly Mn-Doped GaAs Nanowires Realized by Ion-Implantation under Dynamic Annealing Conditions2011Konferansepaper (Fagfellevurdert)
  • 11.
    Chalangar, Ebrahim
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Linköping University, Norrköping, Sweden.
    Machhadani, Houssaine
    Linköping University, Linköping, Sweden.
    Lim, Seung-Hyuk
    Linköping University, Linköping, Sweden.
    Karlsson, K. Fredrik
    Linköping University, Linköping, Sweden.
    Nur, Omer
    Linköping University, Norrköping, Sweden.
    Willander, Magnus
    Linköping University, Norrköping, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Linköping University, Norrköping, Sweden & Lund University, Lund, Sweden.
    Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites2018Inngår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 29, nr 41, artikkel-id 415201Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The development of future 3D-printed electronics relies on the access to highly conductive inexpensive materials that are printable at low temperatures (<100 C). The implementation of available materials for these applications are, however, still limited by issues related to cost and printing quality. Here, we report on the simple hydrothermal growth of novel nanocomposites that are well suited for conductive printing applications. The nanocomposites comprise highly Al-doped ZnO nanorods grown on graphene nanoplatelets (GNPs). The ZnO nanorods play the two major roles of (i) preventing GNPs from agglomerating and (ii) promoting electrical conduction paths between the graphene platelets. The effect of two different ZnO-nanorod morphologies with varying Al-doping concentration on the nanocomposite conductivity and the graphenedispersity are investigated. Time-dependent absorption, photoluminescence and photoconductivity measurements show that growth in high pH solutions promotes a better graphene dispersity, higher doping levels and enhanced bonding between the graphene and the ZnO nanorods. Growth in low pH solutions yields samples characterized by a higher conductivity and a reduced number of surface defects. These samples also exhibit a large persistent photoconductivity attributed to an effective charge separation and transfer from the nanorods to the graphene platelets. Our findings can be used to tailor the conductivity of novel printable composites, or for fabrication of large volumes of inexpensive porous conjugated graphene-semiconductor composites. © 2018 IOP Publishing Ltd.

  • 12.
    Conache, Gabriela
    et al.
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Gray, Struan M.
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Bordag, Michael
    Institute for Theoretical Physics, Leipzig University.
    Ribayrol, Aline
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Fröberg, Linus
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Samuelson, Lars
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Montelius, Lars
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    AFM-based manipulation of InAs nanowires2008Inngår i: Proceedings of the IVC-17 (17th International Vacuum Congress) [also] ICSS-13 (13th International Conference on Surface Science) [also] ICN+T-2007 (International Conference on Nanoscience and Technology): 2-6 July 2007, Stockholm, Sweden, Bristol: Institute of Physics (IOP), 2008, Vol. 100, nr 5, 1, s. 052051-052051-4Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A controlled method of manipulation of nanowires was found using the tip of an Atomic Force Microscope (AFM). Manipulation is done in the ‘Retrace Lift’ mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. Using this method, we have studied InAs nanowires on different substrates. We have also investigated interactions between wires and with gold features patterned onto the substrates.

  • 13.
    Conache, Gabriela
    et al.
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (CAMP).
    Gray, Struan M.
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Ribayrol, Aline
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Fröberg, Linus E.
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (CAMP).
    Montelius, Lars
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Friction measurements of InAs nanowires on Silicon nitride by AFM manipulation2009Inngår i: Small, ISSN 1613-6810, Vol. 5, nr 2, s. 203-207Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A study was conducted to perform friction measurements of InAs nanowires (NW) on silicon nitride (Si 3N 4) through atomic force microscopy (AFM) manipulation. The investigations revealed the friction force per unit length for sliding and static friction over a range of nanowire diameters. It was found that there is a significant difference between the coefficients of the two sliding modes for large wires. It was also found that the difference between the two sliding modes disappears at smaller diameters and the sliding friction becomes equal with the static friction. The AFM investigations were performed on a Nanoscope IIIa Dimension 3100, using rectangular cantilevers, with a nominal spring constant of 30 N m -1. The nanowires were manipulated, using the 'Retrace Lift' mode of the AFM controller. The friction force per unit length was gathered from the local curvature of the NWs, using standard elasticity theory.

  • 14.
    Conache, Gabriela
    et al.
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Gray, Struan M.
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Ribayrol, Aline
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Fröberg, Linus
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Samuelson, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Montelius, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Comparative friction measurements of InAs nanowires on three substrates2010Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 108, nr 9, s. 094307-094307-5Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have investigated friction between InAs nanowires and three different substrates: SiO2, fluorosilanized SiO2, and Si3N4. The nanowires were pushed laterally with the tip of an atomic force microscope and the friction force per unit length for both static and sliding friction was deduced from the equilibrium shape of the bent wires. On all three substrates, thick wires showed a difference between sliding and static friction of up to three orders of magnitude. Furthermore, all substrates display a transition to stick-slip motion for nanowires with a diameter of less than about 40 nm. Hydrophobic and hydrophilic substrates display similar friction behavior suggesting that a condensed water layer does not strongly influence our results. The patterns and trends in the friction data are similar for all three substrates, which indicates that they are more fundamental in character and not specific to a single substrate. ©2010 American Institute of Physics.

  • 15.
    Conache, Gabriela
    et al.
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Gray, Struan M.
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Ribayrol, Aline
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Fröberg, Linus
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Samuelson, Lars
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Montelius, Lars
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Nanowire friction with an applied bias2009Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Recently, we have shown how the friction acting on nanowires pushed across a surface by an AFM tip can be determined by measuring the radius of curvature of the bent wire aŸer manipulation. This technique allows us to study the friction properties of an extended mesoscale contact. Our main focus has been to determine whether such contacts behave like macroscopic objects, in which dišerences between the 'true' and 'apparent' contact areas play a key role and friction varies linearly with the applied normal force, or whether they are more like atomic-scale point contacts, wheremore fundamental processes dominate and friction oŸen is independent of the normal force. In this work we show how the friction between InAs nanowires and an insulating silicon nitride layer on a conductive silicon substrate varies when a DC voltage is applied to the AFM tip during manipulation. e tip charges the capacitor formed by the wire and the grounded silicon back contact, giving rise to attractive Coulomb forces and thus increasing the contact pressure between the wire and the silicon nitride. In this way we can vary the normal force on the sliding surfaces using a single wire, with a constant structure and contact geometry. Using nanowires of about 40-50 nm diameter and a few microns in length we have applied tip voltages in the range +12 to -12 V. Simplemodeling indicates that these voltages su›ce to give similar levels of band-lling and depletion to when the same wires are used in working wrap-gate or back-gate devices. A monotonic increase of the sliding friction with the voltage applied on the tip was observed. is implies that the friction increases with the normal force and that this mesoscopic system behaves more like a macroscopic contact, despite the nanometer size of the contact in the direction of motion.

  • 16.
    Conache, Gabriela
    et al.
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Ribayrol, Aline
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Fröberg, Linus
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Borgström, Magnus T.
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Samuelson, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Montelius, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Gray, Struan M.
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy2010Inngår i: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 82, nr 3Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    By studying how nanowires lying on a surface bend when pushed by an atomic force microscopy tip we are able to measure the friction between them and the substrate. Here, we show how the friction between InAs nanowires and an insulating silicon nitride layer varies when a dc voltage is applied to the tip during manipulation. The bias charges the capacitor formed by the wire and the grounded silicon back contact. Electrostatic forces increase the contact pressure and allow us to tune the friction between the wire and the silicon nitride surface. Using nanowires of about 40-70 nm diameter and a few microns in length we have applied biases in the range +12 to -12 V. A monotonic increase of the sliding friction with voltage was observed. This increase in friction with the normal force implies that the mesoscopic nanowire-surface system behaves like a macroscopic contact, despite the nanometer size of the contact in the direction of motion. The demonstrated bias-controlled friction has potential applications in MEMS/NEMS devices.

  • 17.
    Fu, Y.
    et al.
    Physical Electronics and Photonics, Department of Physics, Chalmers University of Technology and Gothenburg University, Göteborg, Sweden.
    Willander, M.
    Physical Electronics and Photonics, Department of Physics, Chalmers University of Technology and Gothenburg University, Göteborg, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS).
    Reduced effective temperature of hot electrons in nano-sized metal-oxide-semiconductor field-effect transistors2003Inngår i: Applied Physics A: Materials Science & Processing, ISSN 0947-8396, E-ISSN 1432-0630, Vol. 77, nr 6, s. 799-803Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hot electron effects have been extensively studied in metal-oxide-semiconductor field-effect transistors (MOSFETs). The importance of these effects when the dimensions are drastically reduced has so far not been thoroughly investigated. The scope of this paper is therefore to present a detailed study of the effective temperature of excess electrons in nanoscale MOSFETs by solving coupled Schrödinger and Poisson equations. It is found that the increased doping levels and reduced junction depths lead to substantially higher local Fermi levels in the source and drain regions. As a result, the temperature difference between electrons injected into the drain and local electrons is reduced. The scaling of the gate oxide thickness, as well as the drain voltage furthermore reduces the electron temperature in the drain. The detrimental effects of hot electron injection are therefore expected to be decreased by scaling the MOSFET.

  • 18.
    Gooth, Johannes
    et al.
    Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany & IBM Research-Zurich, Rüschlikon, Switzerland.
    Zierold, Robert
    Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany.
    Sergelius, Philip
    Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany.
    Hamdou, Bacel
    Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany.
    Garcia, Javier
    Institute for Metallic Materials, IFW Dresden, Dresden, Germany.
    Damm, Christine
    Institute for Metallic Materials, IFW Dresden, Dresden, Germany.
    Rellinghaus, Bernd
    Institute for Metallic Materials, IFW Dresden, Dresden, Germany.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Division of Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pertsova, Anna
    Department of Physics and Electrical Engineering, Linnaeus University, Kalmar, Sweden.
    Canali, Carlo
    Department of Physics and Electrical Engineering, Linnaeus University, Kalmar, Sweden.
    Borg, Mattias
    IBM Research-Zurich, Rüschlikon, Switzerland.
    Nielsch, Kornelius
    Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany & Institute for Metallic Materials, IFW Dresden, Dresden, Germany.
    Local Magnetic Suppression of Topological Surface States in Bi2Te3 Nanowires2016Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 10, nr 7, s. 7180-7188Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Locally induced, magnetic order on the surface of a topological insulator nanowire could enable room-temperature topological quantum devices. Here we report on the realization of selective magnetic control over topological surface states on a single facet of a rectangular Bi2Te3 nanowire via a magnetic insulating Fe3O4 substrate. Low-temperature magnetotransport studies provide evidence for local time-reversal symmetry breaking and for enhanced gapping of the interfacial 1D energy spectrum by perpendicular magnetic-field components, leaving the remaining nanowire facets unaffected. Our results open up great opportunities for development of dissipation-less electronics and spintronics. © 2016 American Chemical Society.

  • 19.
    Hussain, Laiq
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Karimi, Mohammad
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Berg, Alexander
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Gustafsson, Anders
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes2017Inngår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 28, nr 48, artikkel-id 485205Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed. © 2017 IOP Publishing Ltd

  • 20.
    Hussain, Laiq
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS).
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Wang, Q.
    Acreo Swedish ICT AB, Kista, 16425, Sweden.
    Karim, A.
    Acreo Swedish ICT AB, Kista, 16425, Sweden.
    Anderson, J.
    Acreo Swedish ICT AB, Kista, 16425, Sweden.
    Jafari, Mehrdad
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Song, J.
    Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
    Choi, W. J.
    Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
    Han, I. K.
    Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
    Lim, J. Y.
    Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
    SWIR-LWIR Photoluminescence from Sb-based Epilayers Grown on GaAs Substrates by using MBE2018Inngår i: Journal of the Korean Physical Society, ISSN 0374-4884, E-ISSN 1976-8524, Vol. 73, nr 11, s. 1604-1611Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Utilizing Sb-based bulk epilayers on large-scale low-cost substrates such as GaAs for fabricating infrared (IR) photodetectors is presently attracting significant attention worldwide. For this study, three sample series of GaAsxSb1−x, In1−xGaxSb, and InAsxSb1−x with different compositions were grown on semi-insulating GaAs substrates by using molecular beam epitaxy (MBE) and appropriate InAs quantum dots (QDs) as a defect-reduction buffer layer. Photoluminescence (PL) signals from these samples were observed over a wide IR wavelength range from 2 ÎŒm to 12 ÎŒm in agreement with the expected bandgap, including bowing effects. In particular, interband PL signals from InAsxSb1−x and In1−xGaxSb samples even at room temperature show promising potential for IR photodetector applications. © 2018, The Author(s).

  • 21.
    Höglund, Linda
    et al.
    Acreo AB, Kista, Sweden.
    Asplund, Carl
    Acreo AB, Kista, Sweden.
    Wang, Qin
    Acreo AB, Kista, Sweden.
    Almqvist, Susanne
    Acreo AB, Kista, Sweden.
    Malm, Hedda L.
    Acreo AB, Kista, Sweden.
    Petrini, Erik
    Acreo AB, Kista, Sweden.
    Andersson, Jan Y.
    Acreo AB, Kista, Sweden.
    Holtz, Per Olof
    Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden .
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Origin of photocurrent in lateral quantum dots-in-a-well infrared photodetectors2006Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 88, nr 21, s. 213510-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Interband and intersubband transitions of lateral InAs/In0.15Ga0.85As dots-in-a-well quantum dot infrared photodetectors were studied in order to determine the origin of the photocurrent. The main intersubband transition contributing to the photocurrent (PC) was associated with the quantum dot ground state to the quantum well excited state transition. By a comparison between intersubband PC measurements and the energy level scheme of the structure, as deduced from Fourier transform photoluminescence (FTPL) and FTPL excitation spectroscopies, the main transition contributing to the PC was identified.

  • 22.
    Höglund, Linda
    et al.
    Acreo AB.
    Holtz, Per Olof
    Linköping University.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (CAMP).
    Asplund, C.
    IRnova.
    Wang, Q.
    Acreo AB.
    Almqvist, S.
    Acreo AB.
    Smuk, S.
    IRnova.
    Petrini, E.
    Acreo AB.
    Andersson, J. Y.
    Acreo AB.
    Bias and temperature dependence of the escape processes in quantum dots-in-a-well infrared photodetectors2008Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 93, nr 10, s. 103501-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The performance of quantum dots-in-a-well infrared photodetectors (DWELL IPs) has been studied by means of interband and intersubband photocurrent measurements as well as dark current measurements. Using interband photocurrent measurements, substantial escape of electrons from lower lying states in the DWELL structure at large biases was revealed. Furthermore, a significant variation in the escape probability from energy states in the DWELL structure with applied bias was observed. These facts can explain the strong temperature and bias dependence of both photocurrent and dark currents in DWELL IPs.

  • 23.
    Höglund, Linda
    et al.
    Acreo AB.
    Holtz, Per Olof
    Linköping University.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (CAMP).
    Asplund, C.
    IRnova.
    Wang, Q.
    Acreo AB.
    Malm, H.
    IRnova.
    Almqvist, S.
    Acreo AB.
    Petrini, E.
    Acreo AB.
    Andersson, J. Y.
    Acreo AB.
    Bias mediated tuning of the detection wavelength in asymmetrical quantum dots-in-a-well infrared photodetectors2008Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 93, nr 20, s. 203512-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bias-mediated tuning of the detection wavelength within the infrared wavelength region is demonstrated for quantum dots-in-a-well and dots-on-a-well infrared photodetectors. By positioning the InAs quantum dot layer asymmetrically in an 8 nm wide In0.15Ga0.85As/GaAs quantum well, a shift in the peak detection wavelength from 8.4 to 10.3 μm was observed when reversing the polarity of the applied bias. For a dots-on-a-well structure, the peak detection wavelength was tuned from 5.4 to 8 μm with small changes in the applied bias. These tuning properties could be essential for applications such as modulators and dual-color infrared detection.

  • 24.
    Höglund, Linda
    et al.
    Acreo AB.
    Holtz, Per Olof
    Linköping University.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (CAMP).
    Asplund, C.
    IRnova.
    Wang, Q.
    Acreo AB.
    Malm, H.
    IRnova.
    Almqvist, S.
    Acreo AB.
    Petrini, E.
    Acreo AB.
    Andersson, J. Y.
    Acreo AB.
    Optical pumping as artificial doping in quantum dots-in-a-well infrared photodetectors2009Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 94, nr 5, s. 053503-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Resonant optical pumping across the band gap was used as artificial doping in InAs/In0.15Ga0.85As/GaAs quantum dots-in-a-well infrared photodetectors. A selective increase in the electron population in the different quantum dot energy levels enabled the low temperature photocurrent peaks observed at 120 and 148 meV to be identified as intersubband transitions emanating from the quantum dot ground state and the quantum dot excited state, respectively. The response was increased by a factor of 10 through efficient filling of the quantum dot energy levels by simultaneous optical pumping into the ground states and the excited states of the quantum dots.

  • 25.
    Höglund, Linda
    et al.
    Acreo AB, Kista, Sweden.
    Holtz, Per-Olof
    Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
    Asplund, Carl
    IRnova, Kista, Sweden.
    Wang, Qin
    Acreo AB, Kista, Sweden.
    Almqvist, Susanne
    Acreo AB, Kista, Sweden.
    Malm, Hedda
    IRnova, Kista, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Andersson, Jan Yngve
    Acreo AB, Kista, Sweden.
    Dual source optical pumping experiments revealing the origin of low temperature photocurrent peaks in quantum dots-in-a-well infrared photodetectors2008Konferansepaper (Fagfellevurdert)
  • 26.
    Höglund, Linda
    et al.
    Acreo AB, Kista, Sweden & Linköping University, Linköping, Sweden.
    Holtz, Per-Olof
    Linköping University, Linköping, Sweden.
    Asplund, Carl
    IRnova, Kista, Sweden.
    Wang, Qin
    Acreo AB, Kista, Sweden.
    Almqvist, Susanne
    Acreo AB, Kista, Sweden.
    Petrini, Erik
    Acreo AB, Kista, Sweden.
    Andersson, Jan Y.
    Acreo AB, Kista, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Lund University, Lund, Sweden.
    Tuning of the detection wavelength in quantum dots-in-a-well infrared photodetectors2008Inngår i: Proceedings of SPIE, 6940, Infrared Technology and Applications XXXIV, 694002, 2008, Vol. 6940, nr 1-2, artikkel-id 694002Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this study, bias mediated tuning of the detection wavelength within the infrared wavelength region is demonstrated for quantum dots-in-a-well (DWELL) infrared photodetectors. In DWELL structures, intersubband transitions in the conduction band occur from a discrete state in the quantum dot to a subband inthe quantum well. Compared to "conventional" quantum dot infrared photodetectors, where the transitions take place between different discrete bands in thequantum dots, new possibilities to tune the detection wavelength window are opened up, partly by varying the quantum dot energy levels and partly by adjusting the width and composition of the quantum well. In the DWELL structure used, an asymmetric positioning of the InAs quantum dot layer in a 8 nm wide In0.15Ga0.85As/GaAs QW has been applied which enables tuning of the peak detection wavelength within the long wavelength infrared (LWIR; 8 - 14 gm) region. When the applied bias was reversed, a wavelength shift from 8.5 to 9.5 mu m was observed for the peak position in the spectral response. For another DWELL structure, with a well width of 2 nm, the tuning range of the detector could be shifted from the medium wavelength infrared (MWIR; 3-5 mu m) region to the LWIR region. With small changes in the applied bias, the peak detection wavelength could be shifted from 5.1 to 8 mu m. These tuning properties ofDWELL structures could be essential for applications such as modulators and two-colour infrared detection. © (2008) COPYRIGHT SPIE--The International Society for Optical Engineering.

  • 27.
    Höglund, Linda
    et al.
    Acreo AB, Kista, Sweden.
    Holtz, Per-Olof
    IFM, Linköping University, Linköping, Sweden.
    Asplund, Carl
    IRnova AB, Kista, Sweden.
    Wang, Qin
    Acreo AB, Kista, Sweden.
    Almqvist, Susanne
    Acreo AB, Kista, Sweden.
    Petrini, Erik
    Acreo AB, Kista, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Andersson, Jan Y.
    Acreo AB, Kista, Sweden.
    Voltage mediated tuning of the detection wavelength in quantum dots-in-a-well infrared photodetectors2008Konferansepaper (Fagfellevurdert)
  • 28.
    Höglund, Linda
    et al.
    Industrial Nano- and Microtechnology, Acreo AB, Kista, Sweden.
    Holtz, Per-Olof
    Department of Physics, Chemistry and Biology (LFM), Linköping University, Linköping, Sweden.
    Ouattara, L.
    Synchrotron Radiation Research, Lund University, Lund, Sweden.
    Asplund, Carl
    IRnova, Kista, Sweden.
    Wang, Qin
    Industrial Nano- and Microtechnology, Acreo AB, Kista, Sweden.
    Almqvist, Susanne
    Industrial Nano- and Microtechnology, Acreo AB, Kista, Sweden.
    Petrini, Erik
    Industrial Nano- and Microtechnology, Acreo AB, Kista, Sweden.
    Malm, Hedda
    IRnova, Kista, Sweden.
    Borglind, J.
    Industrial Nano- and Microtechnology, Acreo AB, Kista, Sweden.
    Smuk, S.
    Industrial Nano- and Microtechnology, Acreo AB, Kista, Sweden.
    Mikkelsen, A.
    Synchrotron Radiation Research, Lund University, Lund, Sweden.
    Lundgren, E.
    Synchrotron Radiation Research, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and the Nanometer Consortium, Lund University, Lund, Sweden.
    Andersson, Jan Y.
    Industrial Nano- and Microtechnology, Acreo AB, Kista, Sweden.
    Quantum dots-in-a-well infrared photodetectors for long wavelength infrared detection2006Inngår i: Proceedings of SPIE: The International Society for Optical Engineering / [ed] James G. Grate, Francois Kajzar & Mikael lindgren, Bellingham, Wash.: SPIE - International Society for Optical Engineering, 2006, s. U51-U63Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We report on a quantum dots-in-a-well infrared photodetector (DWELL QDIP) grown by metal organic vapor phase epitaxy. The DWELL QDIP consisted of ten stacked InAs/In0.5Ga0.85As/GaAs QD layers embedded between n-doped contact layers. The density of the QDs was about 9 × 10 10 cm-2 per QD layer. The energy level structure of the DWELL was revealed by optical measurements of interband transitions, and from a comparison with this energy level scheme the origin of the photocurrent peaks could be identified. The main intersubband transition contributing to the photocurrent was associated with the quantum dot ground state to the quantum well excited state transition. The performance of the DWELL QDIPs was evaluated regarding responsivity and dark current for temperatures between 15 K and 77 K. The photocurrent spectrum was dominated by a LWIR peak, with a peak wavelength at 8.4 μm and a full width at half maximum (FWHM) of 1.1 μm. At an operating temperature of 65 K, the peak responsivity was 30 mA/W at an applied bias of 4 V and the dark current was 1.2×10-5 A/cm2. Wavelength tuning from 8.4 μm to 9.5 μm was demonstrated, by reversing the bias of the detector.

  • 29.
    Höglund, Linda
    et al.
    Acreo AB.
    Holtz, Per-Olof
    IFM, Linköping University.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Asplund, Carl
    IRnova.
    Wang, Qin
    Acreo AB.
    Almqvist, Susanne
    Acreo AB.
    Malm, Hedda
    IRnova.
    Petrini, Erik
    Acreo AB.
    Andersson, Jan
    Acreo AB.
    Selective optical doping to predict the performance and reveal the origin of photocurrent peaks in quantum dots-in-a-well infrared photodetectors2009Inngår i: Infrared physics & technology, ISSN 1350-4495, E-ISSN 1879-0275, Vol. 52, nr 6, s. 272-275Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Resonant optical pumping across the band gap was used as artificial doping in InAs/In0.15Ga0.85As/GaAs quantum dots-in-a-well infrared photodetectors. Through efficient filling of the quantum dot energy levels by simultaneous optical pumping into the ground states and the excited states of the quantum dots, the response was increased by a factor of 10. Low temperature photocurrent peaks observed at 120 and 148 meV were identified as intersubband transitions emanating from the quantum dot ground state and the quantum dot excited state, respectively by a selective increase of the electron population in the different quantum dot energy levels.

  • 30.
    Höglund, Linda
    et al.
    Acreo AB.
    Karlsson, Fredrik
    IFM, Linköping University.
    Holtz, Per-Olof
    IFM, Linköping University.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Pistol, Mats-Erik
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet.
    Wang, Qin
    Acreo AB.
    Almqvist, Susanne
    Acreo AB.
    Asplund, Carl
    IRnova.
    Malm, Hedda
    IRnova.
    Petrini, Erik
    Acreo AB.
    Andersson, Jan
    Acreo AB.
    Energy level scheme of InAs/InxGa1-xAs/GaAs quantum-dots-in-a-well infrared photodetector structures2010Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 82, nr 3, s. 035314-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A thorough investigation of quantum-dots-in-a-well structures for infrared photodetector applications has been performed employing different experimental techniques. The electronic structure of self-assembled InAs quantum dots embedded in an In0.15Ga0.85As/GaAs quantum well (QW) was deduced from photoluminescence (PL) and PL excitation (PLE) spectroscopy. From polarization-dependent PL it was revealed that the quantum dots hold two electron energy levels and two heavy-hole levels. Tunnel capacitance spectroscopy confirmed an electron energy level separation of about 50 meV, and additionally, that the conduction-band ground state and excited state of the dots are twofold and fourfold degenerates, respectively. Intersubband photocurrent spectroscopy, combined with simultaneous interband pumping of the dots, revealed a dominant transition at 150 meV (8.5 mu m) between the ground state of the quantum dots and the excited state of the QW. Results from detailed full three-dimensional calculations of the electronic structure, including effects of composition intermixing and interdot interactions, confirm the experimentally unravelled energy level scheme of the dots and well.

  • 31.
    Iakovleva, Natalia
    et al.
    Petrozavodsk State University, Russia.
    Kokatev, Alexander
    Petrozavodsk State University.
    Pettersson, Håkan
    Petrozavodsk State University, Russia.
    Savchenko, O.
    Petrozavodsk State University, Russia.
    Iakovlev, A.
    Petrozavodsk State University, Russia.
    Chupakhina, E.
    Petrozavodsk State University, Russia.
    Suomolajnen, K.
    Petrozavodsk State University, Russia.
    Stepanova, K.
    Petrozavodsk State University, Russia.
    Khanina, E.
    Petrozavodsk State University, Russia.
    Self-organized porous anodic oxide matrix and nanocomposite materials on their base2011Konferansepaper (Fagfellevurdert)
  • 32.
    Jafari Jam, Reza
    et al.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Kvennefors, Anders
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Graczyk, Mariusz
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Maximov, Ivan
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    III-V nanowire synthesis by use of electrodeposited gold particles2015Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, nr 1, s. 134-138Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Semiconductor nanowires are great candidates for building novel electronic devices. Considering the cost of fabricating such devices, substrate reuse and gold consumption are the main concerns. Here we report on implementation of high throughput gold electrodeposition for selective deposition of metal seed particles in arrays defined by lithography for nanowire synthesis. By use of this method, a reduction in gold consumption by a factor of at least 300 was achieved, as compared to conventional thermal evaporation for the same pattern. Because this method also facilitates substrate reuse, a significantly reduced cost of the final device is expected. We investigate the morphology, crystallography, and optical properties of InP and GaAs nanowires grown from electrodeposited gold seed particles and compare them with the properties of nanowires grown from seed particles defined by thermal evaporation of gold. We find that nanowire synthesis, as well as the material properties of the grown nanowires are comparable and quite independent of the gold deposition technique. On the basis of these results, electrodeposition is proposed as a key technology for large-scale fabrication of nanowire-based devices.

  • 33.
    Jafari Jam, Reza
    et al.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Kvennefors, Anders
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Graczyk, Mariusz
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Maximov, Ivan
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nanoimprint Lithography and Gold Electroplating for Nanowire Seed Particle Definition2013Konferansepaper (Fagfellevurdert)
  • 34.
    Jain, Vishal
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Barrigon, Enrique
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Bosco, Lorenzo
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Schroff, Shishi
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Boix, Virginia
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Karimi, Mohammad
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jafari Jam, Reza
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Berg, Alexander
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors2017Inngår i: ACS Photonics, E-ISSN 2330-4022, Vol. 4, nr 11, s. 2693-2698Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Avalanche photodetectors (APDs) are key components in optical communication systems due to their increased photocurrent gain and short response time as compared to conventional photodetectors. A detector design where the multiplication region is implemented in a large band gap material is desired to avoid detrimental Zener tunneling leakage currents, a concern otherwise in smaller band gap materials required for absorption at 1.3/1.55 μm. Self-assembled III-V semiconductor nanowires offer key advantages such as enhanced absorption due to optical resonance effects, strain-relaxed heterostructures, and compatibility with mainstream silicon technology. Here, we present electrical and optical characteristics of single InP and InP/InAsP nanowire APD structures. Temperature-dependent breakdown characteristics of p+-n-n+ InP nanowire devices were investigated first. A clear trap-induced shift in breakdown voltage was inferred from I-V measurements. An improved contact formation to the p+-InP segment was observed upon annealing, and its effect on breakdown characteristics was investigated. The band gap in the absorption region was subsequently varied from pure InP to InAsP to realize spatially separate absorption and multiplication APDs in heterostructure nanowires. In contrast to the homojunction APDs, no trap-induced shifts were observed for the heterostructure APDs. A gain of 12 was demonstrated for selective optical excitation of the InAsP segment. Additional electron-beam-induced current measurements were carried out to investigate the effect of local excitation along the nanowire on the I-V characteristics. Simulated band profiles and electric field distributions support our interpretation of the experiments. Our results provide important insight for optimization of avalanche photodetector devices based on III-V nanowires. © 2017 American Chemical Society

  • 35.
    Jain, Vishal
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and Nano, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Karimi, Mohammad
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and Nano, Lund University, Lund, Sweden.
    Hussain, Laiq
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and Nano, Lund University, Lund, Sweden.
    Aghaeipour, Mahtab
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Berg, Alexander
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Nylund, Gustav
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Capasso, Federico
    Harvard University, Cambridge, United States of America.
    Samuelson, Lars
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and Nano, Lund University, Lund, Sweden.
    Bias-dependent spectral tuning in InP nanowire-based photodetectors2017Inngår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 28, nr 11, artikkel-id 114006Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanowire array ensembles contacted in a vertical geometry are extensively studied and considered strong candidates for next generations of industrial scale optoelectronics. Key challenges in this development deal with optimization of the doping profile of the nanowires and the interface between nanowires and transparent top contact. Here we report on photodetection characteristics associated with doping profile variations in InP nanowire array photodetectors. Bias-dependent tuning of the spectral shape of the responsivity is observed which is attributed to a Schottky-like contact at the nanowire-ITO interface. Angular dependent responsivity measurements, compared with simulated absorption spectra, support this conclusion. Furthermore, electrical simulations unravel the role of possible self-gating effects in the nanowires induced by the ITO/SiOx wrap-gate geometry. Finally, we discuss possible reasons for the observed low saturation current at large forward biases.  

  • 36.
    Jain, Vishal
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Lindgren, David
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Hussein, Laiq
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Wallentin, Jesper
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
    Borgström, Magnus T.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Gustafsson, Anders
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Large area photodetectors based on InP NWs with InAs/InAsP QWs2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Focal plane arrays have a widespread use in infrared imaging, which often rely on cryogenic cooling to curtail the dark current level necessary for a reasonable signal-to-noise ratio. Quantum well (QW) infrared photodetectors are uniform over large areas, but suffer from a severe drawback related to the selection rules for intersubband absorption. An interesting alternative is self-assembled III-V nanowires offering a key advantage owing to the enhanced absorption by optical resonance effects and strain relaxation.We present electrical and optical results from large ensembles of n+-i-n+ InP NWs, axially grown on InP substrates with InAs/InAsP QWs embedded within the i-segment, designed for both interband and intersubband detection. The NWs are contacted in a vertical geometry using 50 nm SiO2 as the insulating layer and ITO as the top contact. We first investigate the crystal quality of the InAsP QWs grown in 180 nm diameter NWs, using PL, CL and TEM. To achieve more abrupt InAs/InAsP QWs, we grow 130 nm diameter NWs and deplete the In present in the Au catalysts. The effect of n-doping on the device performance is studied by fabricating two different NW geometries, with and without an n+-segment grown before the nominal i-segment in the NW. In addition, the position of the QWs within the i-segment is varied to further scrutinize effects related to doping and crystal structure. Finally, we report spectrally resolved photocurrent results from the QWs in the near-infrared region and discuss about the further developments needed for intersubband detection.

  • 37.
    Jain, Vishal
    et al.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Lindgren, David
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Large Area Photodetectors at 1.3/1.55 μm Based on InP/InAsP NWs2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Optical communication systems benefit a lot from APDs due to their increased photocurrent gain as compared to conventional photodetectors. An avalanche region in a high bandgap material is especially useful to avoid the tunneling leakage currents in smaller bandgap materials needed for absorption at 1.3/1.55 µm wavelengths. Self-assembled III-V semiconductor nanowires have a key advantage owing to the enhanced absorption due to optical resonance effects and the strain relaxation in NWs, thus facilitating monolithic integration of different heterostructures on cheaper substrates. Here, we present electrical and optical results from large ensembles of InP/InAsP NWs, axially grown on p+ InP substrates. The NW base consists of an InP p-n junction acting as the avalanche region followed by an InP/InAsP absorption region, and ending with a top InP n+-segment. The 130nm diameter NW arrays are contacted in a vertical geometry using SiO2 as the insulating layer and ITO as the top contact. The n-doping in the avalanche region is varied to study it’s influence on the avalanche mechanism. Also the bandgap in the absorption region is varied from pure InP to smaller bandgap InAsP by varying the As content. Clear interband signals from different crystal phases of InP/InAsP are observed in photocurrent spectroscopy. Moreover, the photocurrent spectra are consistent with spatially resolved photoluminescence signals. We also report on polarization and angle dependent photocurrent response of the NW array.

  • 38.
    Jain, Vishal
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Lund University, Lund, Sweden.
    Wallentin, Jesper
    Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Lund University, Lund, Sweden.
    Messing, Maria E.
    Lund University, Lund, Sweden.
    Asoli, Damir
    Ideon Science Park, Sol Voltaics AB, Lund, Sweden.
    Graczyk, Mariusz
    Lund University, Lund, Sweden.
    Witzigmann, Bernd
    University of Kassel, Kassel, Germany .
    Capasso, Federico
    Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Study of photocurrent generation in InP nanowire-based p+–i–n+ photodetectors2014Inngår i: Nano Reseach, ISSN 1998-0124, E-ISSN 1998-0000, Vol. 7, nr 4, s. 544-552Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report on electrical and optical properties of p+-i-n+ photodetectors/solar cells based on square millimeter arrays of InP nanowires grown on InP substrates. The study includes a sample series where the p+-segment length was varied between 0 and 250nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p+-segment length. Without p+-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p+-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the nanowires, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the ZB and WZ InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, TEM as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations. © 2014 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  • 39.
    Jain, Vishal
    et al.
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Wallentin, Jesper
    Physics Department, Lund University, Lund, Sweden.
    Borgström, Magnus
    Physics department, Lund university, Lund, Sweden.
    Storm, Kristian
    Physics Department, Lund University, Lund, Sweden.
    Landin, Lars
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Wickert, Peter
    Sol Voltaics AB, Lund, Sweden.
    Capasso, Federico
    Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Physics Department, Lund university, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    A comparative study of nanowire based infrared p+-i-n+ photodetectors2012Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We present a comparative study of electrical and optical properties of two types of p+-i-n+ photodetectors based on self-assembled ensembles of vertical InP nanowires (NWs) monolithically grown on InP. The detectors differ in the type of p+ contact, one detector geometry has p+-i-n+ segments integrated into the NWs (type A) while the other detector has i-n+ NW segments grown directly on a p+ substrate(type B). The samples were prepared by first depositing 80 nm Au nanoparticles on a p+ InP substrate using an aerosol technique and subsequently growing NWs using MOVPE. The NWs have a polytypecrystal structure of alternating wurtzite and zincblende segments. The processing of the detectors include deposition of SiO2, followed by an etching step to remove the oxide from the tip of the NWs, and finally sputtering of ITO on 1x1 mm2 device areas. The two most prominent differences between the detectors concern the current-voltage (I-V) characteristics and the spatial location of generated photocurrent. From spectrally resolved photocurrent measurements, we conclude that the photocurrent in detector type A is primarily generated in the NWs, whereas the photocurrent in type B detectors mainly stems from the substrate. Photogenerated carriers in the substrate diffuse to the NWs where they are effectively funnelled into the NWs. The I-V characteristics of the type A detector displays a non-trivial transport behaviour for forward biases, whereas type B shows excellent rectifying behavior with an ideality factor of about 2.5. We will discuss detailed analysis of the spectral fingerprints of the two detector types revealing the mixed crystal phase of the polytype NWs and bandstructure effects, temperature dependence of the I-V characteristics and typical photodetector parameters.

  • 40.
    Jain, Vishal
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Wallentin, Jesper
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Asoli, Damir
    Sol Voltaics AB, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Processing and Characterization of Nanowire Arrays for Photodetectors2015Inngår i: Nano-Structures for Optics and Photonics: Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion / [ed] Baldassare Di Bartolo, John Collins & Luciano Silvestri, Dordrecht: Springer, 2015, s. 511-512Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We present a fabrication scheme of contacting arrays of vertically standing nanowires (NW) for LEDs (Duan et al. Nature 409:66–69, 2001), photodetectors (Wang et al. Science (NY) 293:1455–1457, 2001) or solar cell applications (Wallentin et al. Science (NY) 339:1057–1060, 2013). Samples were prepared by depositing Au films using nano-imprint lithography (Må rtensson et al. Nano Lett 4:699–702, 2004) which are used as catalysts for NW growth in a low-pressure metal organic vapour phase epitaxy system where III-V precursors and dopant gases are flown at elevated temperatures which lead to the formation of NWs with different segments (Borgström et al. Nano Res 3:264–270, 2010). An insulating SiO2 layer is then deposited and etched from the top segments of the NWs followed by sputtering of a transparent top conducting oxide and opening up 1 × 1 mm2 device areas through a UV lithography step and etching of the top contact from non-device areas. A second UV lithography step was subsequently carried out to open up smaller windows on the ITO squares for bond pad definition, followed by metallization and lift-off; and the substrate is used as back contact. We also report on the electrical and optical properties of near-infrared p+−i−n+ photodetectors/solar cells based on square millimeter ensembles of InP nanowires grown on InP substrates. The study includes a sample series where the p +-segment length was varied between 0 and 250 nm, as well as solar cell samples with 9.3 % efficiency with similar design. The NWs have a complex modulated crystal structure of alternating wurtzite and zincblende segments, a polytypism that depends on dopant type. The electrical data for all samples display excellent rectifying behavior with an ideality factor of about 2 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p +-segment length. Without p +-segment in the NWs, photogenerated carriers funneled from the substrate into the NWs contribute significantly to the photocurrent. Adding a p +-segment shifts the depletion region up into the i-region of the NWs reducing the substrate contribution to photocurrent while strongly improving the collections of carriers generated in the NWs, in agreement with theoretical modeling (Fig. 48.1). © Springer Science+Business Media Dordrecht 2015.

  • 41.
    Johannes, A.
    et al.
    Institute for Solid State Physics, Friedrich-Schiller-University Jena, Jena, Germany.
    Noack, S.
    Institute for Solid State Physics, Friedrich-Schiller-University Jena, Jena, Germany.
    Paschoal Jr., Waldomiro
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Kumar, Sandeep
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jacobsson, D.
    Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, L.
    Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Dick, K. A.
    Lund University, Lund, Sweden.
    Martinez-Criado, G.
    European Synchrotron Radiation Facility, Grenoble, France.
    Burghammer, M.
    European Synchrotron Radiation Facility, Grenoble, France.
    Ronning, C.
    Institute for Solid State Physics, Friedrich-Schiller-University Jena, Jena, Germany.
    Corrigendum: Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires (2014 J. Phys. D: Appl. Phys. 47 394003)2015Inngår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 48, nr 7, artikkel-id 079501Artikkel i tidsskrift (Fagfellevurdert)
  • 42.
    Johannes, Andreas
    et al.
    Institute for Solid State Physics, Friedrich-Schiller-University Jena, Jena, Germany.
    Noack, Stefan
    Institute for Solid State Physics, Friedrich-Schiller-University Jena, Jena, Germany.
    Paschoal Jr, Waldomiro
    Högskolan i Halmstad, Akademin för informationsteknologi. Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Kumar, Sandeep
    Högskolan i Halmstad, Akademin för informationsteknologi. Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jacobsson, Daniel
    Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Dick, Kimberly A.
    Centre for Analysis and Synthesis, Lund University, Lund, Sweden.
    Martinez-Criado, G.
    European Synchrotron Radiation Facility, Grenoble, France.
    Burghammer, M.
    European Synchrotron Radiation Facility, Grenoble, France.
    Ronning, Carsten
    Institute for Solid State Physics, Friedrich-Schiller-University Jena, Jena, Germany.
    Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires2014Inngår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 47, nr 39, artikkel-id 394003Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We simulated and experimentally investigated the sputter yield of ZnO and GaAs nanowires, which were implanted with energetic Mn ions at room temperature. The resulting thinning of the nanowires and the dopant concentration with increasing Mn ion fluency were measured by accurate scanning electron microscopy (SEM) and nano-x-Ray Fluorescence (nanoXRF) quantification, respectively. We observed a clearly enhanced sputter yield for the irradiated nanowires compared to bulk, which is also corroborated by iradina simulations. These show a maximum if the ion range matches the nanowire diameter. As a consequence of the erosion thinning of the nanowire, the incorporation of the Mn dopants is also enhanced and increases non-linearly with increasing ion fluency. © 2014 IOP Publishing Ltd.

  • 43.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Limpert, Steven
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgstrom, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Long-wavelength intersubband quantum disc-in-nanowire photodetectors with normal incidence photoresponse2018Inngår i: QSIP 2018: Abstracts, 2018, s. 55-55Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Semiconductor nanowire (NW) technology has emerged as a key facilitator of novel optoelectronics e.g. solar cells, photodetectors and LEDs. The functional wavelength range of current NW-based photodetectors is typically limited to the visible/ near-infrared region. In this work, we present the first ever reported electrical and optical characteristics of longwavelength IR photodetectors based on large square millimeter ensembles of vertically grown and processed InAsP/InP heterostructure NWs grown on InP substrates1 . More specifically, the MOVPE-grown NWs comprise single or multiple InAsP quantum discs (QDiscs) axially embedded in an n+-i-n+ geometry. The NWs are contacted together in a vertical geometry by uniformly depositing a thin insulating SiO2 layer, selective etching of the oxide from the tip of the NWs followed by sputtering of ITO as a common top contact to all NWs. Using Fourier transform photocurrent spectroscopy, we demonstrate a photoresponse extending from the visible to far infrared1,2. In particular, the infrared response from 3-20 μm is enabled by intersubband transitions in the lowbandgap InAsP quantum discs synthesized axially within the InP NWs. The detector elements exhibit an unexpected sensitivity to normal incident radiation, apparently in contradiction to well-known selection rules for intersubband transitions in quantum wells. From in-depth 2D and 3D optical simulations we attribute this result to an excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors. Key advantages with the proposed design include a large degree of freedom in choice of material compositions, enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that our novel detector design offers a route towards monolithic integration of compact and sensitive broadband III-V NW detectors with main-stream silicon technology which could seriously challenge existing commercially available photodetectors.

  • 44.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden & Sol Voltaics AB, Lund, Sweden.
    Limpert, Steven
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Mansouri, Ebrahim
    Högskolan i Halmstad, Akademin för informationsteknologi.
    Zeng, Xulu
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Linke, Heiner
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab).
    Nanowire photodetectors with embedded quantum heterostructures for infrared detection2019Inngår i: Infrared physics & technology, ISSN 1350-4495, E-ISSN 1879-0275, Vol. 96, s. 209-212Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanowires offer remarkable opportunities for realizing new optoelectronic devices because of their unique fundamental properties. The ability to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on infrared photodetectors based on arrays of InP nanowires with embedded InAsP quantum discs. We demonstrate a strongly reduced dark current in the detector elements by compensating the unintentional n-doping in the nominal intrinsic region of the InP nanowires by in-situ doping with Zn, a crucial step towards realizing high-performance devices. The optimized array detectors show a broad spectral sensitivity at normal incidence for wavelengths from visible to far-infrared up to 20 μm, promoted by both interband and intersubband transitions. Optical simulations show that the unexpected normal incidence response at long wavelengths is due to non-zero longitudinal modes hosted by the nanowires. © 2018 Elsevier B.V.

  • 45.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden & Sol Voltaics AB, Lund, Sweden.
    Limpert, Steven
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Zeng, Xulu
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Geijselaers, Irene
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Fu, Ying
    Department of Applied Physics, Royal Institute of Technology (KTH), Solna, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Linke, Heiner
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared2018Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, nr 1, s. 365-372Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Semiconductor nanowires have great potential for realizing broadband photodetectors monolithically integrated with silicon. However, the spectral range of such detectors has so far been limited to selected regions in the ultraviolet, visible and near-infrared. Here, we report on the first intersubband nanowire heterostructure array photodetectors exhibiting a spectrally resolved photoresponse from the visible to long-wavelength infrared. In particular, the infrared response from 3-20 mm is enabled by intersubband transitions in low-bandgap InAsP quantum discs synthesized axially within InP nanowires. The intriguing optical characteristics, including unexpected sensitivity to normal incident radiation, are explained by excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors. Our results provide a generalizable insight into how broadband nanowire photodetectors may be designed, and how engineered nanowire heterostructures open up new fascinating opportunities for optoelectronics.

  • 46.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Lund University, Lund, Sweden.
    Heurlin, Magnus
    Lund University, Lund, Sweden.
    Samuelson, Lars
    Lund University, Lund, Sweden.
    Borgström, Magnus. T
    Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Lund University, Lund, Sweden.
    Infrared Photodetectors Based on Nanowire Arrays – Towards Far Infrared Region2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Nanowire semiconductors are promising candidates for optoelectronic applications such as solar cells, photodetectors and lasers due to their quasi-1D geometry and large surface to volume ratio. The functional wavelength range of NW-based detectors is typically limited to the visible/near-infrared region. In this work, we present electrical and optical properties of novel IR photodetectors based on large square millimeter ensembles (>1million) of vertically processed semiconductor heterostructure nanowires (NWs) grown on InP substrates which operates in longer wavelengths. InP NWs comprising single or multiple (20) InAs/InAsP QDics axially embedded in an n-i-n geometry, have been grown on InP substrates using MOVPE. The NWs are contacted in vertical direction by ALD deposition of 50 nm SiO2 as an insulating layer followed by sputtering of ITO and evaporation of Ti and Au as top contact layer. In order to extend the sensitivity range to the mid-wavelength and long-wavelength regions, the intersubband transition within conduction band of InAsP QDisc is suggested. We present first experimental indications of intersubband photocurrent in NW geometry and discuss important design parameters for realization of intersubband detectors. Key advantages with the proposed design include large degree of freedom in choice of materials compositions, possible enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that our novel detector design offers the route towards monolithic integration of compact and sensitive III-V NW long wavelength detectors with Si technology.

  • 47.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Lund University, Lund, Sweden.
    Heurlin, Magnus
    Lund University, Lund, Sweden.
    Samuelson, Lars
    Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Lund University, Lund, Sweden.
    Intersubband Photodetectors Realized with InAsP/InP Quantum Discs-in-Nanowire Heterostructures2017Konferansepaper (Annet vitenskapelig)
  • 48.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jain, Vishal
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Hussain, Laiq
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Lindgren, David
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Stehr, Jan Eric
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Buyanova, Irina A.
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Gustafsson, Anders
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors2017Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 6, s. 3356-3362Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n+–i–n+ InP nanowires periodically ordered in arrays. The nanowires were grown by metal–organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 μm and a bias-tunable responsivity reaching 7 A/W@1.38 μm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiOx/ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors. © 2017 American Chemical Society.

  • 49.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Zeng, Xulu
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Witzigmann, Bernd
    Computational Electronics and Photonics Group and CINSaT, University of Kassel, Kassel, Germany.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    High Responsivity of InP/InAsP Nanowire Array Broadband Photodetectors Enhanced by Optical Gating2019Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High-performance photodetectors operating in the near-infrared (0.75−1.4 μm) and short-wave infrared (1.4−3.0 μm) portion ofthe electromagnetic spectrum are key components in many optical systems.Here, we report on a combined experimental and theoretical study of squaremillimeter array infrared photodetectors comprising 3 million n+−i−n+ In Pnanowires grown by MOVPE from periodically ordered Au seed particles. Thenominal i-segment, comprising 20 InAs0.40P0.60 quantum discs, was grown byuse of an optimized Zn doping to compensate the nonintentional n-doping.The photodetectors exhibit bias- and power-dependent responsivities reachingrecord-high values of 250 A/W at 980 nm/20 nW and 990 A/W at 532 nm/60nW, both at 3.5 V bias. Moreover, due to the embedded quantum discs, thephotoresponse covers a broad spectral range from about 0.70 to 2.5 eV, ineffect outperforming conventional single InGaAs detectors and dual Si/Gedetectors. The high responsivity, and related gain, results from a novel proposed photogating mechanism, induced by the complex charge carrier dynamics involving optical excitation and recombination in the quantum discs and interface traps, which reduces the electron transport barrier between the highly doped ncontact and the i-segment. The experimental results obtained are in perfect agreement with the proposed theoretical model and represent a significant step forward toward understanding gain in nanoscale photodetectors and realization of commercially viable broadband photon detectors with ultrahigh gain. © 2019 American Chemical Society.

  • 50.
    Karimi, Mohammad
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Tillämpad matematik och fysik (MPE-lab). Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Zeng, Zulu
    Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Witzigmann, Bernd
    Computational Electronics and Photonics Group and CINSaT, University of Kassel, Germany.
    Samuelson, Lars
    Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Borgstrom, Magnus T.
    Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Department of Physics, Lund University, Lund, Sweden.
    Room temperature high responsivity SWIR/NIR photodetectors based on InAsP/InP NW array heterostructures2019Inngår i: Nanowire Week: Book of Abstracts, 2019, s. 188-188Konferansepaper (Fagfellevurdert)
123 1 - 50 of 101
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf