hh.sePublications
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bilstrup, Katrin
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Böhm, Annette
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Lidström, Kristoffer
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Jonsson, Magnus
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Strandén, Lars
    SP Technical Research Institute of Sweden, Borås, Sweden.
    Zakizadeh, Hossein
    Volvo Technology Corporation, Göteborg, Sweden .
    Vehicle Alert System2007In: Proceedings of 14th world congress on intelligent transport system (ITS), 2007, p. 2-9Conference paper (Refereed)
    Abstract [en]

    The Vehicle Alert System (VAS) project focuses on cooperative alert services based on timely and reliable communication under the challenging circumstances pertaining to a highly mobile vehicular network. Through a cross-layer design, we gain the flexibility needed to adapt the system to the individual requirements of three chosen application scenarios that represent different situations where cooperation between vehicles can make a significant impact. The VAS project is a collaboration involving academic as well as industrial partners and the final stage of the project is a demonstrator that implements results from the research.

  • 2.
    Bilstrup, Katrin
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Böhm, Annette
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Lidström, Kristoffer
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Jonsson, Magnus
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Uhlemann, Elisabeth
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Report on the Collaboration between CVIS and CERES in the Project Vehicle Alert System (VAS)2009Report (Other academic)
    Abstract [en]

    In March 2007, an agreement was made for interchange of experiences between CVIS and the Centre for Research on Embedded Systems (CERES) at Halmstad University in Sweden. The majority of the work relating to this collaboration has been conducted within the CERES project Vehicle Alert System (VAS), aiming to use vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to provide different types of warning messages. The main focus of the VAS project is on communication and in particular the lower layers of the communication stack are investigated. VAS involves academic researchers from Halmstad University as well as researchers from Volvo Technology, SP Technical Research Institute of Sweden and the company Free2move. This report presents the results of the VAS project, its publications, and other issues of interest both to the CVIS consortium as well as a broader scope.

  • 3.
    Böhm, Annette
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Lidström, Kristoffer
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Jonsson, Magnus
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Evaluating CALM M5-based vehicle-to-vehicle communication in various road settings through field trials2010In: Proceedings - Conference on Local Computer Networks, LCN, (2010 12 01): 613-620, Piscataway, N.J.: IEEE Press, 2010, p. 613-620Conference paper (Refereed)
    Abstract [en]

    Future cooperative Intelligent Transport Systems (ITS) applications aimed to improve safety, efficiency and comfort on our roads put high demands on the underlying wireless communication system. To gain better understanding of the limitations of the 5.9 GHz frequency band and the set of communication protocols for medium range vehicle to vehicle (V2V) communication, a set of field trials with CALM M5 enabled prototypes has been conducted. This paper describes five different real vehicle traffic scenarios covering both urban and rural settings at varying vehicle speeds and under varying line-of-sight (LOS) conditions and discusses the connectivity (measured as Packet Reception Ratio) that could be achieved between the two test vehicles. Our measurements indicate a quite problematic LOS sensitivity that strongly influences the performance of V2V-based applications. We further discuss how the awareness of these context-based connectivity problems can be used to improve the design of possible future cooperative ITS safety applications.

  • 4.
    Lidström, Kristoffer
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Cooperative Safety Based on Shared Conventions2008Conference paper (Other academic)
  • 5.
    Lidström, Kristoffer
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Andersson, Johan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bergh, Fredrik
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bjäde, Mattias
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Mak, Spencer
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Sjöberg, Katrin
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Halmstad University Grand Cooperative Driving Challenge 2011 Technical Paper2011Report (Other academic)
    Abstract [en]

    Traffic congestion is a large and growing problem in many countries due to an ever increasing number of vehicles. Increasing capacity by simply extending the road infrastructure is in many places impossible due to space and cost limitations. Everyday, people spend countless hours in car queues all over the world. The existing road infrastructure must be better utilized to save time and to reduce energy use. By enabling wireless communication between vehicles (V2V) and between vehicles and infrastructure (V2I) the flow of traffic can be better controlled in order to increase not only efficiency but also safety and comfort. Cooperative platooning is one way to increase efficiency by allowing vehicles to form road trains behind a lead vehicle. The Grand Cooperative Driving Challenge (GCDC) is an attempt to move towards a quicker deployment of cooperative platooning. This extended abstract gives an overview of Halmstad University’s team and its technical and organizational approach in preparing a vehicle for the competition.

  • 6.
    Lidström, Kristoffer
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    A Spatial QoS Requirements Specification for V2V Applications2010In: IEEE Intelligent Vehicles Symposium (IV), 2010, Piscataway, NJ.: IEEE Press, 2010, p. 548-553Conference paper (Refereed)
    Abstract [en]

    Vehicle-to-vehicle wireless communication is a key component of tomorrow's cooperative safety applications. However, the wireless link is susceptible to effects such as shadowing which can cause communication failures. Such failures may in turn lead to hazardous traffic situations when safety applications cease to function. By monitoring communication QoS and adapting to changes, effects of link failure may be mitigated, however this requires a specification of the application QoS requirements. In this paper we combine the T-Window reliability QoS metric with a spatial component, allowing us to capture the dependencies between VANET QoS requirements and road geometry. The proposed representation can be used both at design-time, to characterize applications, and at run-time for QoS monitoring and adaptation purposes.

  • 7.
    Lidström, Kristoffer
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Act normal: using uncertainty about driver intentions as a warning criterion2009In: Proceeding 16th World Congress on Intelligent Transportation Systems, 2009, p. 8-Conference paper (Refereed)
    Abstract [en]

    Cooperative safety using vehicle-to-vehicle and vehicle-to-infrastructure communication enables warning systems to take into account more detailed and longer range information than previously possible. Due to the increased prediction horizon tactical concepts such as traffic rules and driver intentions must be modelled in addition to short term kinematics traditionally used in driver alert systems. We propose a cooperative warning system that models such concepts using artificial potential fields taking into account multiple route-choice hypotheses. The system is being implemented on the hardware and software platform of the European CVIS project and will be used to evaluate the feasibility of using the history of route-choice estimates as an indicator of unpredictable driver behaviour.

  • 8.
    Lidström, Kristoffer
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Cooperative Communication Disturbance Detection in Vehicle Safety Systems2007Conference paper (Refereed)
    Abstract [en]

    Proactive vehicle safety systems based on vehicle-to-vehicle and infrastructure-to-vehicle communication are promising new approaches to reducing the number of accidents on our roads. In-vehicle applications are envisaged to provide a variety of services to the driver including warning about potential collisions and other hazardous situations. For the safe operation of these applications it is important not only to efficiently model the environment but also to reason about, and predict, how reliable such a model is under various circumstances. In this paper we propose an approach to estimating the reliability and availability of the wireless medium at hazardous locations by cooperatively detecting communication disturbances in order to allow for more accurate decisions by in-vehicle applications.

  • 9.
    Lidström, Kristoffer
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Model-based estimation of driver intentions using particle filtering2008In: 11th International IEEE Conference on Intelligent Transportation Systems, 2008. ITSC 2008, Piscataway, NJ.: IEEE Press, 2008, p. 1177-1182Conference paper (Refereed)
    Abstract [en]

    Proactive vehicle alert systems that warn the driver about dangerous situations must be able to reason about, and predict, likely future states of the traffic environment. Our prediction method is based on a combination of a fuzzy logic model for intersection turning behavior and Gipps model for car following behavior. The stochastic models are used together with a particle filter to recursively approximate the state probability distribution as measurements are received over time. Estimates of the unobservable part of the state are used to predict path choice and thus driver intentions. The approach is evaluated on trajectory data gathered from video footage of an intersection, however it is also relevant for trajectories acquired through vehicle-to-vehicle communication.

  • 10.
    Lidström, Kristoffer
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Strandén, Lars
    SP. Technical research institute of Sweden, Borås.
    Safety Considerations for Cooperating Vehicles using Wireless Communication2007In: The 5th IEEE International Conference on Industrial Informatics, Piscataway, NJ.: IEEE , 2007, p. 995-1000Conference paper (Refereed)
    Abstract [en]

    Even though improvements in automotive safety have caused a significant decline in the number of traffic fatalities there is a strong need for further work. One important area is wireless communication from vehicle-to-vehicle and vehicle-to-infrastructure which enables a host of new cooperative traffic applications ranging from collision avoidance to intelligent cruise control. However, using cooperation between vehicles as an enabler for safety-related functionality raises new issues on system dependability. In this paper we characterize the domain of cooperating vehicles and cooperative situation awareness and suggest a system architecture that promotes independent development and verification of safety functions.

  • 11.
    Lidström, Kristoffer
    et al.
    Viktoria Institute, Göteborg, Sweden.
    Sjöberg, Katrin
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Holmberg, Ulf
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Andersson, Johan
    Volvo Car Corporation, Göteborg, Sweden.
    Bergh, Fredrik
    Cybercom Group, Stockholm, Sweden.
    Bjäde, Mattias
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Mak, Spencer
    Innovation Team, Halmstad, Sweden.
    A modular CACC system integration and design2012In: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016, Vol. 13, no 3, p. 1050-1061Article in journal (Refereed)
    Abstract [en]

    This paper describes the Halmstad University entry in the Grand Cooperative Driving Challenge, which is a competition in vehicle platooning. Cooperative platooning has the potential to improve traffic flow by mitigating shock wave effects, which otherwise may occur in dense traffic. A longitudinal controller that uses information exchanged via wireless communication with other cooperative vehicles to achieve string-stable platooning is developed. The controller is integrated into a production vehicle, together with a positioning system, communication system, and human–machine interface (HMI). A highly modular system architecture enabled rapid development and testing of the various subsystems. In the competition, which took place in May 2011 on a closed-off highway in The Netherlands, the Halmstad University team finished second among nine competing teams.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf