hh.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adam, Rania E.
    et al.
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Chalangar, Ebrahim
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Pirhashemi, Mahsa
    Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
    Pozina, Galia
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Liu, Xianjie
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Palisaitis, Justinas
    Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Department of Sciences and Technology, Linköping University, Norrköping, Sweden & Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Willander, Magnus
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Nur, Omer
    Department of Sciences and Technology, Linköping University, Norrköping, Sweden.
    Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities2019In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 52, p. 30585-30598Article in journal (Refereed)
    Abstract [en]

    High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials. © 2019 Elsevier B.V.

  • 2.
    Bhatti, Muhammad Ali
    et al.
    Department of Environmental Sciences University of Sindh Jamshoro, Sindh, Pakistan.
    Shah, Aqeel Ahmed
    NED University of Engineering and Technology Karachi, Pakistan.
    Almani, Khalida Faryal
    Department of Environmental Sciences University of Sindh Jamshoro, Sindh, Pakistan.
    Tahira, Aneela
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Chalangar, Ebrahim
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Chandio, Ali dad
    NED University of Engineering and Technology Karachi, Pakistan.
    Nur, Omer
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Willander, Magnus
    Department of Science and Technology, Campus Norrköping, Linköping University, Norrköping, Sweden.
    Ibupoto, Zafar Hussain
    Institute of Chemistry University of Sindh Jamshoro, Sindh, Pakistan.
    Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange2019In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956Article in journal (Refereed)
    Abstract [en]

    In this study, the doped ZnO nanorods with silver (Ag) as photosensitive material are prepared by the solvothermal method. The structural and optical characterization is carried out by the scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and UV–visible spectroscopy. The use of Ag as dopant did not alter the morphology of ZnO except sample 4 which has flower like morphology. The Ag, Zn and O are the main constituent of doped materials. The XRD revealed a hexagonal phase for ZnO and cubic phase for silver and confirmed the successful doping of Ag. The photocatalytic activity of Ag doped ZnO nanorods was investigated for the photo degradation of methyl orange. The photocatalytic measurements show that 88% degradation of methyl orange by the sample 4 within the 2 h of UV light treatment (365 nm) is significant advancement in the photocatalyst and provide the inexpensive and promising materials for the photochemical applications. © 2019 Elsevier Ltd and Techna Group S.r.l.

  • 3.
    Chalangar, Ebrahim
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Linköping University, Linköping, Sweden.
    Graphene-based nanocomposites for electronics and photocatalysis2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The development of future electronics depends on the availability of suitable functional materials. Printed electronics, for example, relies on access to highly conductive, inexpensive and printable materials, while strong light absorption and low carrier recombination rates are demanded in photocatalysis industry. Despite all efforts to develop new materials, it still remains a challenge to have all the desirable aspects in a single material. One possible route towards novel functional materials, with improved and unprecedented physical properties, is to form composites of different selected materials.

    In this work, we report on hydrothermal growth and characterization of graphene/zinc oxide (GR/ZnO) nanocomposites, suited for electronics and photocatalysis application. For conductive purposes, highly Al-doped ZnO nanorods grown on graphene nanoplates (GNPs) prevent the GNPs from agglomerating and promote conductive paths between the GNPs. The effect of the ZnO nanorod morphology and GR dispersity on the nanocomposite conductivity and GR/ZnO nanorod bonding strength were investigated by conductivity measurements and optical spectroscopy. The inspected samples show that growth in high pH solutions promotes a better graphene dispersity, higher doping and enhanced bonding between the GNPs and the ZnO nanorods. Growth in low pH solutions yield samples characterized by a higher conductivity and a reduced number of surface defects.

    In addition, different GR/ZnO nanocomposites, decorated with plasmonic silver iodide (AgI) nanoparticles, were synthesized and analyzed for solar-driven photocatalysis. The addition of Ag/AgI generates a strong surface plasmon resonance effect involving metallic Ag0, which redshifts the optical absorption maximum into the visible light region enhancing the photocatalytic performance under solar irradiation. A wide range of characterization techniques including, electron microscopy, photoelectron spectroscopy and x-ray diffraction confirm a successful formation of photocatalysts.

    Our findings show that the novel proposed GR-based nanocomposites can lead to further development of efficient photocatalyst materials with applications in removal of organic pollutants, or for fabrication of large volumes of inexpensive porous conjugated GR-semiconductor composites.

  • 4.
    Chalangar, Ebrahim
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Linköping University, Norrköping, Sweden.
    Machhadani, Houssaine
    Linköping University, Linköping, Sweden.
    Lim, Seung-Hyuk
    Linköping University, Linköping, Sweden.
    Karlsson, K. Fredrik
    Linköping University, Linköping, Sweden.
    Nur, Omer
    Linköping University, Norrköping, Sweden.
    Willander, Magnus
    Linköping University, Norrköping, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Linköping University, Norrköping, Sweden & Lund University, Lund, Sweden.
    Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites2018In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 29, no 41, article id 415201Article in journal (Refereed)
    Abstract [en]

    The development of future 3D-printed electronics relies on the access to highly conductive inexpensive materials that are printable at low temperatures (<100 C). The implementation of available materials for these applications are, however, still limited by issues related to cost and printing quality. Here, we report on the simple hydrothermal growth of novel nanocomposites that are well suited for conductive printing applications. The nanocomposites comprise highly Al-doped ZnO nanorods grown on graphene nanoplatelets (GNPs). The ZnO nanorods play the two major roles of (i) preventing GNPs from agglomerating and (ii) promoting electrical conduction paths between the graphene platelets. The effect of two different ZnO-nanorod morphologies with varying Al-doping concentration on the nanocomposite conductivity and the graphenedispersity are investigated. Time-dependent absorption, photoluminescence and photoconductivity measurements show that growth in high pH solutions promotes a better graphene dispersity, higher doping levels and enhanced bonding between the graphene and the ZnO nanorods. Growth in low pH solutions yields samples characterized by a higher conductivity and a reduced number of surface defects. These samples also exhibit a large persistent photoconductivity attributed to an effective charge separation and transfer from the nanorods to the graphene platelets. Our findings can be used to tailor the conductivity of novel printable composites, or for fabrication of large volumes of inexpensive porous conjugated graphene-semiconductor composites. © 2018 IOP Publishing Ltd.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf