hh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kivisaari, Pyry
    et al.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Berg, Alexander
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Karimi, Mohammad
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Storm, Kristian
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Limpert, Steven
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Oksanen, Jani
    Engineered Nanosystems Group, Aalto University, Aalto, Finland.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Optimization of Current Injection in AlGaInP Core−Shell Nanowire Light-Emitting Diodes2017In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 6, p. 3599-3606Article in journal (Refereed)
    Abstract [en]

    Core–shell nanowires offer great potential to enhance the efficiency of light-emitting diodes (LEDs) and expand the attainable wavelength range of LEDs over the whole visible spectrum. Additionally, nanowire (NW) LEDs can offer both improved light extraction and emission enhancement if the diameter of the wires is not larger than half the emission wavelength (λ/2). However, AlGaInP nanowire LEDs have so far failed to match the high efficiencies of traditional planar technologies, and the parameters limiting the efficiency remain unidentified. In this work, we show by experimental and theoretical studies that the small nanowire dimensions required for efficient light extraction and emission enhancement facilitate significant loss currents, which result in a low efficiency in radial NW LEDs in particular. To this end, we fabricate AlGaInP core–shell nanowire LEDs where the nanowire diameter is roughly equal to λ/2, and we find that both a large loss current and a large contact resistance are present in the samples. To investigate the significant loss current observed in the experiments in more detail, we carry out device simulations accounting for the full 3D nanowire geometry. According to the simulations, the low efficiency of radial AlGaInP nanowire LEDs can be explained by a substantial hole leakage to the outer barrier layer due to the small layer thicknesses and the close proximity of the shell contact. Using further simulations, we propose modifications to the epitaxial structure to eliminate such leakage currents and to increase the efficiency to near unity without sacrificing the λ/2 upper limit of the nanowire diameter. To gain a better insight of the device physics, we introduce an optical output measurement technique to estimate an ideality factor that is only dependent on the quasi-Fermi level separation in the LED. The results show ideality factors in the range of 1–2 around the maximum LED efficiency even in the presence of a very large voltage loss, indicating that the technique is especially attractive for measuring nanowire LEDs at an early stage of development before electrical contacts have been optimized. The presented results and characterization techniques form a basis of how to simultaneously optimize the electrical and optical efficiency of core–shell nanowire LEDs, paving the way to nanowire light emitters that make true use of larger-than-unity Purcell factors and the consequently enhanced spontaneous emission. © 2017American Chemical Society

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf