hh.sePublications
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Faraj, Maycel
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Synergy of lip motion and acoustic features in biometric speech and speaker recognition2007In: I.E.E.E. transactions on computers (Print), ISSN 0018-9340, E-ISSN 1557-9956, Vol. 56, no 9, p. 1169-1175Article in journal (Refereed)
    Abstract [en]

    This paper presents the scheme and evaluation of a robust audio-visual digit-and-speaker-recognition system using lip motion and speech biometrics. Moreover, a liveness verification barrier based on a person's lip movement is added to the system to guard against advanced spoofing attempts such as replayed videos. The acoustic and visual features are integrated at the feature level and evaluated first by a support vector machine for digit and speaker identification and, then, by a Gaussian mixture model for speaker verification. Based on ap300 different personal identities, this paper represents, to our knowledge, the first extensive study investigating the added value of lip motion features for speaker and speech-recognition applications. Digit recognition and person-identification and verification experiments are conducted on the publicly available XM2VTS database showing favorable results (speaker verification is 98 percent, speaker identification is 100 percent, and digit identification is 83 percent to 100 percent).

  • 2.
    Faraj, Maycel Isaac
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Lip-motion and speech biometrics in person recognition2006Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Biometric identification techniques are frequently used to improve security, e.g. in financial transactions, computer networks and secure critical locations. The purpose of biometric authentication systems is to verify an individual by her biological characteristics including those generating characterisitic behaviour. It is not only fingerprints that are used for authentication; our lips, eyes, speech, signatures and even facial temperature are now being used to identify us. This presumably increases security since these traits are harder to copy, steal or lose.

    This thesis attempts to present an effective scheme to extract descriminative features based on a novel motion estimation algorithm for lip movement. Motion is defined as the distribution of apparent velocities in the changes of brightness patterns in an image. The velocity components of a lip sequence are computed by the well-known 3D structure tensor using 1D processing, in 2D manifolds. Since the velocities are computed without extracting the speaker's lip contours, more robust visual features can be obtained. The velocity estimation is performed in rectangular lip regions, which affords increased computational efficiency.

    To investigate the usefulness of the proposed motion features we implement a person authentication system based on lip movements information with (and without) speech information. It yields a speaker verification rate of 98% with lip and speech information. Comparisons are made with an alternative motion estimation technique and a description of our proposed feature fusion technique is given. Beside its value in authentication, the technique can be used naturally to evaluate the liveness i.e. to determine if the biometric data is be captured from a legitimate user, live user who is physically present at the point of acquisition, of a speaking person as it can be used in a text-prompted dialog.

  • 3.
    Faraj, Maycel Isaac
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Lip-motion biometrics for audio-visual identity recognition2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Biometric recognition systems have been established as powerful security tools to prevent unknown users from entering high risk systems and areas. They are increasingly being utilized in surveillance and access management (city centers, banks, etc.) by using individuals' physical or biological characteristics. The present study reports on the use of lip motion as a standalone biometric modality as well as a modality integrated with audio speech for identity and digit recognition. First, we estimate motion vectors from a sequence of lip-movement images. The motion is modelled as the distribution of apparent line velocities in the movement of brightness patterns in an image. Then, we construct compact lip-motion features from the regional statistics of the local velocities. These can be used alone or merged with audio features to recognize individuals or speech (digits). In this work, we utilized two classifiers for identification and verification of identity as well as with digit recognition. Although the study is focused on processing lip movements in a video sequence, significant speech processing is a prerequisite given that the contribution of video analysis to speech analysis is studied in conjunction with recognition of humans and what they say (digits). Such integration is necessary to understand multimodel biometric systems to the benefit of recognition performance and robustness against noise. Extensive experiments utilizing one of the largest available databases, XM2VTS, are presented.

  • 4.
    Faraj, Maycel Isaac
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Audio–visual person authentication using lip-motion from orientation maps2007In: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 28, no 11, p. 1368-1382Article in journal (Refereed)
    Abstract [en]

    This paper describes a new identity authentication technique by a synergetic use of lip-motion and speech. The lip-motion is defined as the distribution of apparent velocities in the movement of brightness patterns in an image and is estimated by computing the velocity components of the structure tensor by 1D processing, in 2D manifolds. Since the velocities are computed without extracting the speaker’s lip-contours, more robust visual features can be obtained in comparison to motion features extracted from lip-contours. The motion estimations are performed in a rectangular lip-region, which affords increased computational efficiency. A person authentication implementation based on lip-movements and speech is presented along with experiments exhibiting a recognition rate of 98%. Besides its value in authentication, the technique can be used naturally to evaluate the “liveness” of someone speaking as it can be used in text-prompted dialogue. The XM2VTS database was used for performance quantification as it is currently the largest publicly available database (≈300 persons) containing both lip-motion and speech. Comparisons with other techniques are presented.

  • 5.
    Faraj, Maycel Isaac
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Lip Biometrics for Digit Recognition2007In: Computer Analysis of Images and Patterns, Proceedings, Berlin: Springer Berlin/Heidelberg, 2007, Vol. 4673, p. 360-365Conference paper (Refereed)
    Abstract [en]

    This paper presents a speaker-independent audio-visual digit recognition system that utilizes speech and visual lip signals. The extracted visual features are based on line-motion estimation obtained from video sequences with low resolution (128 ×128 pixels) to increase the robustness of audio recognition. The core experiments investigate lip motion biometrics as stand-alone as well as merged modality in speech recognition system. It uses Support Vector Machines, showing favourable experimental results with digit recognition featuring 83% to 100% on the XM2VTS database depending on the amount of available visual information.

  • 6.
    Faraj, Maycel Isaac
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Lip Motion Features for Biometric Person Recognition2009In: Visual Speech Recognition: Lip Segmentation and Mapping / [ed] Alan Wee-Chung Liew & Shilin Wang, Hershey, PA: Medical Information Science Reference , 2009, p. 495-532Chapter in book (Other academic)
    Abstract [en]

    The present chapter reports on the use of lip motion as a stand alone biometric modality as well as a modality integrated with audio speech for identity recognition using digit recognition as a support. First, the auhtors estimate motion vectors from images of lip movements. The motion is modeled as the distribution of apparent line velocities in the movement of brightness patterns in an image. Then, they construct compact lip-motion features from the regional statistics of the local velocities. These can be used as alone or merged with audio features to recognize identity or the uttered digit. The author’s present person recognition results using the XM2VTS database representing the video and audio data of 295 people. Furthermore, we present results on digit recognition when it is used in a text prompted mode to verify the liveness of the user. Such user challenges have the intention to reduce replay attack risks of the audio system. © 2009, IGI Global.

  • 7.
    Faraj, Maycel Isaac
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Motion Features from Lip Movement for Person Authentication2006In: The 18th International Conference on Pattern Recognition: proceedings : 20 - 24 August, 2006, Hong Kong / [ed] Y Y Tang, Washington, D.C.: IEEE Computer Society, 2006, p. 1059-1062Conference paper (Refereed)
    Abstract [en]

    This paper describes a new motion based feature extraction technique for speaker identification using orientation estimation in 2D manifolds. The motion is estimated by computing the components of the structure tensor from which normal flows are extracted. By projecting the 3D spatiotemporal data to 2D planes, we obtain projection coefficients which we use to evaluate the 3D orientations of brightness patterns in TV like image sequences. This corresponds to the solutions of simple matrix eigenvalue problems in 2D, affording increased computational efficiency. An implementation based on joint lip movements and speech is presented along with experiments which confirm the theory, exhibiting a recognition rate of 98% on the publicly available XM2VTS database

  • 8.
    Faraj, Maycel Isaac
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Person verification by lip-motion2006In: Conference on Computer Vision and Pattern Recognition Workshop: New York City, New York, 17-22 June, 2006 / [ed] Cordelia Schmid, Stefano Soatto, Carlo Tomasi, Piscataway, N.J.: IEEE Press, 2006, p. 37-37, article id 1640477Conference paper (Refereed)
    Abstract [en]

    This paper describes a new motion based feature extraction technique for speaker recognition using orientation estimation in 2D manifolds. The motion is estimated by computing the components of the structure tensor from which normal flows are extracted. By projecting the 3D spatiotemporal data to 2-D planes we obtain projection coefficients which we use to evaluate the 3-D orientations of brightness patterns in TV like 2D image sequences. This corresponds to the solutions of simple matrix eigenvalue problems in 2D, affording increased computational efficiency. An implementation based on joint lip movements and speech is presented along with experiments which confirm the theory, exhibiting a recognition rate of 98% on the publicly available XM2VTS database.

  • 9.
    Faraj, Maycel Isaac
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Speaker and Digit Recognition by Audio-Visual Lip Biometrics2007In: Advances in biometrics: international conference, ICB 2007, Seoul, Korea, August 27-29, 2007 ; proceedings / [ed] Lee, SW and Li, SZ, Berlin: Springer, 2007, p. 1016-1024Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    This paper proposes a new robust bi-modal audio visual digit and speaker recognition system by lip-motion and speech biometrics. To increase the robustness of digit and speaker recognition, we have proposed a method using speaker lip motion information extracted from video sequences with low resolution (128 ×128 pixels). In this paper we investigate a biometric system for digit recognition and speaker identification based using line-motion estimation with speech information and Support Vector Machines. The acoustic and visual features are fused at the feature level showing favourable results with digit recognition being 83% to 100% and speaker recognition 100% on the XM2VTS database.

  • 10.
    Kollreider, Klaus
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Fronthaler, Hartwig
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Faraj, Maycel
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Real-Time Face Detection and Motion Analysis With Application in “Liveness” Assessment2007In: IEEE Transactions on Information Forensics and Security, ISSN 1556-6013, E-ISSN 1556-6021, Vol. 2, no 3 part 2, p. 548-558Article in journal (Refereed)
    Abstract [en]

    A robust face detection technique along with mouth localization, processing every frame in real time (video rate), is presented. Moreover, it is exploited for motion analysis onsite to verify "liveness" as well as to achieve lip reading of digits. A methodological novelty is the suggested quantized angle features ("quangles") being designed for illumination invariance without the need for preprocessing (e.g., histogram equalization). This is achieved by using both the gradient direction and the double angle direction (the structure tensor angle), and by ignoring the magnitude of the gradient. Boosting techniques are applied in a quantized feature space. A major benefit is reduced processing time (i.e., that the training of effective cascaded classifiers is feasible in very short time, less than 1 h for data sets of order 104). Scale invariance is implemented through the use of an image scale pyramid. We propose "liveness" verification barriers as applications for which a significant amount of computation is avoided when estimating motion. Novel strategies to avert advanced spoofing attempts (e.g., replayed videos which include person utterances) are demonstrated. We present favorable results on face detection for the YALE face test set and competitive results for the CMU-MIT frontal face test set as well as on "liveness" verification barriers.

  • 11.
    Teferi, Dereje
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Faraj, Maycel Isaac
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Bigun, Josef
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Text Driven Face-Video Synthesis Using GMM and Spatial Correlation2007In: Image analysis: 15th Scandinavian Conference, SCIA 2007, Aalborg, Denmark, June 10-14, 2007 ; proceedings / [ed] Ersboll, B K, Pedersen, K S, Berlin: Springer Berlin/Heidelberg, 2007, p. 572-580Conference paper (Refereed)
    Abstract [en]

    Liveness detection is increasingly planned to be incorporated into biometric systems to reduce the risk of spoofing and impersonation. Some of the techniques used include detection of motion of the head while posing/speaking, iris size in varying illumination, fingerprint sweat, text-prompted speech, speech-to-lip motion synchronization etc. In this paper, we propose to build a biometric signal to test attack resilience of biometric systems by creating a text-driven video synthesis of faces. We synthesize new realistic looking video sequences from real image sequences representing utterance of digits. We determine the image sequences for each digit by using a GMM based speech recognizer. Then, depending on system prompt (sequence of digits) our method regenerates a video signal to test attack resilience of a biometric system that asks for random digit utterances to prevent play-back of pre-recorded data representing both audio and images. The discontinuities in the new image sequence, created at the connection of each digit, are removed by using a frame prediction algorithm that makes use of the well known block matching algorithm. Other uses of our results include web-based video communication for electronic commerce and frame interpolation for low frame rate video.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf