hh.sePublications
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Wang, Yan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    A Domain-Specific Language for Protocol Stack Implementation in Embedded Systems2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Embedded network software has become increasingly interesting for both research and business as more and more networked embedded systems emerge. Well-known infrastructure protocol stacks are reimplemented on new embedded hardware and software architectures. New requirements of modern applications and devices require to implement newly designed or revised protocols. However, implementing protocol stacks for embedded systems remains a time-consuming and error-prone task due to the complexity and performancecritical nature of network software. It is even more so when targeting resource constrained embedded systems: implementations have to minimize energy consumption, memory usage etc., while programming efficiency is needed to improve on time-to-market, scalability, maintainability and product evolution. Therefore, it is worth researching on how to make protocol stack implementations for embedded systems both easier and more likely to be correct within the resource limits.

    In the work presented in this thesis, we take a language-based approach and aim to facilitate the implementation of protocol stacks while realizing performance demands and being aware of energy consumption and memory usage within the constraints imposed by embedded systems. We give background on DSL implementation techniques, investigate common practices in network protocol development to determine the potential of domain-specifi languages (DSLs) for embedded network software, and propose a domain-specifi embedded language (DSEL), Protege (Protocol Implementation Generator), for declaratively describing overlaid protocol stacks. In Protege, a high-level packet specification is dually compiled into an internal data representation for protocol logic implementation, and packet processing methods which are then integrated into the dataflow framework of a protocol overlay specification. Constructs for finite state machines allow to specify protocol logic in a concise manner, close to the protocol specification style. Protege specifications are compiled to highly portable C code for various architectures.

    Four attached scientific papers report our main results in more detail: an embedded implementation of the data description calculus in Haskell, a compilation framework for generating packet processing code with overlays, the domain-specific language Protege in overview (including embedding techniques and runtime system features), and a real-world case study implementing an industrial application protocol.

  • 2.
    Wang, Yan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    A Language-Based Approach to Protocol Stack Implementation in Embedded Systems2009Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Embedded network software has become increasingly interesting for both researchand business as more and more networked embedded systems emerge.Well-known infrastructure protocol stacks are reimplemented on new emergingembedded hardware and software architectures. Also, newly designed orrevised protocols are implemented in response to new application requirements.However, implementing protocol stacks for embedded systems remains a timeconsumingand error-prone task due to the complexity and performance-criticalnature of network software. It is even more so when targeting resource constrainedembedded systems: implementations have to minimize energy consumption,memory usage and so on, while programming efficiency is needed toimprove on time-to-market, scalability, maintainability and product evolution.Therefore, it is worth researching on how to make protocol stack implementationsfor embedded systems both easier and more likely to be correct withinthe resource limits.In the work we present in this thesis, we take a language-based approachand aim to facilitate the implementation of protocol stacks while realizingperformance demands and keeping energy consumption and memory usagewithin the constraints imposed by embedded systems. Language technologyin the form of a type system, a runtime system and compiler transformationscan then be used to generate efficient implementations. We define a domainspecificembedded language (DSEL), Implementation of Protocol Stacks (IPS),for declaratively describing overlaid protocol stacks. In IPS, a high-level packetspecification is dually compiled into an internal data representation for protocollogic implementation, and packet processing methods which are thenintegrated into the dataflow framework of a protocol overlay specification.IPS then generates highly portable C code for various architectures from thissource. We present the compilation framework for generating packet processingand protocol logic code, and a preliminary evaluation of our compiled code.

  • 3.
    Wang, Yan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Gaspes, Veronica
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    A Compositional Implementation of Modbus in Protege2011In: 6th IEEE International Symposium on Industrial Embedded Systems (SIES), 2011, Piscataway, N.J.: IEEE Press, 2011, p. 123-131Conference paper (Refereed)
    Abstract [en]

    Network protocols today play a major role in embedded software for industrial automation, with constant efforts to adapt existing device software to new emerging standards. In earlier work, we have proposed a compilation-based approach using a domain-specific language, Protege, which automatically generates protocol stack implementations in C from modular high-level descriptions. In this paper, we provide a case study of the Protege language in an industrial setting. We have implemented the Modbus protocol over TCP/IP and over serial line, and tested it using an industrial gateway. Our implementation demonstrates Protege's advantages for software productivity, easy maintenance and code reuse, and it achieves many desirable properties of industrial embedded network software.

  • 4.
    Wang, Yan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Gaspes, Veronica
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    A Domain Specific Approach to Network Software Architecture: Assuring Conformance Between Architecture and Code2009In: Fourth International Conference on Digital Telecommunications, 2009. ICDT '09, Piscataway, N.J.: IEEE Press, 2009, p. 127-132Conference paper (Refereed)
    Abstract [en]

    Network software is typically organized according toa layered architecture that is well understood. However, writingcorrect and efficient code that conforms with the architecture stillremains a problem. To overcome this problem we propose to usea domain specific language based approach. The architecturalconstraints are captured in a domain specific notation that can beused as a source for automatic program generation. Conformancewith the architecture is thus assured by construction. Knowledgefrom the domain allows us to generate efficient code. In addition,this approach enforces reuse of both code and designs, one ofthe major concerns in software architecture. In this paper, weillustrate our approach with PADDLE, a tool that generates packetprocessing code from packet descriptions. To describe packets weuse a domain specific language of dependent types that includespacket overlays. From the description we generate C librariesfor packet processing that are easy to integrate with other partsof the code. We include an evaluation of our tool.

  • 5.
    Wang, Yan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Gaspes, Veronica
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    A Domain-Specific Language Approach to Protocol Stack Implementation2010Conference paper (Refereed)
    Abstract [en]

    This paper describes a domain-specific language embeddedin Haskell, IPS, for the implementation of protocol stacks for embeddedsystems. IPS profits from Haskell’s features and generates C implementationsby embedded compilation.

  • 6.
    Wang, Yan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Gaspes, Veronica
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    A Library for Processing Ad hoc Data in Haskell: Embedding a Data Description Language2011In: Implementation and application of functional languages / [ed] Scholz, SB; Chitil, O, Springer, 2011, , p. 16p. 174-191Conference paper (Refereed)
    Abstract [en]

    Ad hoc data formats, i.e. semistructured non-standard dataformats, are pervasive in many domains that need software tools—bioinformatics,demographic surveys, geophysics and network software are justa few. Building tools becomes easier if parsing and other standard inputoutputprocessing can be automated. Modern approaches for dealingwith ad hoc data formats consist of domain specific languages based ontype systems. Compilers for these languages generate data structures andparsing functions in a target programming language in which tools andapplications are then written. We present a monadic library in Haskellthat implements a data description language. Using our library, Haskellprogrammers have access to data description primitives that can be usedfor parsing and that can be integrated with other libraries and applicationprograms without the need of yet another compiler.

  • 7.
    Wang, Yan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Gaspes, Veronica
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    An embedded language for programming protocol stacks in embedded systems2011In: PEPM '11: proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation, January 24, 2011, Austin, Texas, USA, New York, NY, USA: ACM Press, 2011, p. 63-72Conference paper (Refereed)
    Abstract [en]

    Protocol stack specifications are well-structured documents that follow a number of conventions and notations that have proven very useful for the design and dissemination of communication protocols. Protocol stack implementations on the other hand, are done in low-level languages, using error-prone programming techniques resulting in programs that are difficult to relate to the specifications, difficult to maintain, modify, extend and reuse. To overcome these problems we propose a domain-specific language that provides abstractions close to the notations used in protocol specifications. From descriptions in our language we generate C programs that can be integrated with other systems software. The language provides constructs to describe packet formats, including physical layout, constraints and dependencies. It also provides constructs for state machines and for layering protocols into stacks. Experiments show that the C programs we generate are comparable in performance and binary size to hand-crafted C programs.

  • 8.
    Wang, Yan
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Gaspes, Veronica
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Integrating a data description language with protocol stack development2009In: Proceedings of the IASTED International Conference on Modelling, Simulation, and Identification, MSI 2009 / [ed] H. Ma and S. Narayanan, Anaheim, Calif.: ACTA Press, 2009, p. 8-Conference paper (Refereed)
    Abstract [en]

    Communication software, most notoriously protocolstacks, are an area of growing interest. Many companiesimplement new or revised protocols for new applicationrequirements, and reimplement well-known infrastructureprotocol stacks to accomodate to new hardware andsoftware platforms. However, due to the complexity andperformance-critical nature of communication software,implementing protocol stacks remains a time-consumingand error-prone task with considerable impact on time tomarket, scalability and maintainance. The work at handinvestigates how to provide program development supportfor protocol stack implementation to make it easier andmore likely to be correct while respecting non-functionalconstraints. We present a language-based approach for theimplementation of protocol stacks. We define a domainspecificembedded language, IPS, for declaratively describingoverlaid protocol stacks. In IPS a high-level packetspecification is described using a data description languagewhich is compiled into a.) an internal data representation,and b.) packet processing functions in C. Both are then integratedinto the dataflow framework of a protocol overlayspecification. IPS generates highly portable C code for variousarchitectures from this source. We present the compilationframework for generating packet processing andprotocol logic code, and a preliminary evaluation.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf