hh.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bordag, Michael
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Applied Mathematics and Physics (CAMP).
    Ribayrol, Aline
    Lund University.
    Conache, Gabriela
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Applied Mathematics and Physics (CAMP).
    Fröberg, Linus E.
    Lund University.
    Gray, Struan
    Lund University.
    Samuelson, Lars
    Lund University.
    Montelius, Lars
    Lund University.
    Pettersson, Håkan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Applied Mathematics and Physics (CAMP).
    Shear stress measurements on InAs nanowires by AFM manipulation2007In: Small, ISSN 1613-6810, Vol. 3, no 8, p. 1398-1401Article in journal (Refereed)
    Abstract [en]

    On an upward curve? The curvature of an elastically deformed nanowire pinned to a flat surface contains information about the maximum static friction force, and hence the shear stress, between the nanowire and the surface. Here, InAs nanowires are bent in a controlled manner using the tip of an atomic force microscope (see image). The shear stress can be obtained from a simple analysis according to the standard theory of elasticity.

  • 2.
    Conache, Gabriela
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Gray, Struan M.
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Bordag, Michael
    Institute for Theoretical Physics, Leipzig University.
    Ribayrol, Aline
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Fröberg, Linus
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Samuelson, Lars
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    Pettersson, Håkan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Montelius, Lars
    Avd. f. Fasta tillståndets fysik, Lunds Universitet.
    AFM-based manipulation of InAs nanowires2008In: Proceedings of the IVC-17 (17th International Vacuum Congress) [also] ICSS-13 (13th International Conference on Surface Science) [also] ICN+T-2007 (International Conference on Nanoscience and Technology): 2-6 July 2007, Stockholm, Sweden, Bristol: Institute of Physics (IOP), 2008, Vol. 100, no 5, 1, p. 052051-052051-4Conference paper (Refereed)
    Abstract [en]

    A controlled method of manipulation of nanowires was found using the tip of an Atomic Force Microscope (AFM). Manipulation is done in the ‘Retrace Lift’ mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. Using this method, we have studied InAs nanowires on different substrates. We have also investigated interactions between wires and with gold features patterned onto the substrates.

  • 3.
    Conache, Gabriela
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Applied Mathematics and Physics (CAMP).
    Gray, Struan M.
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Ribayrol, Aline
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Fröberg, Linus E.
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Applied Mathematics and Physics (CAMP).
    Montelius, Lars
    Solid State Physics/Nanometer Consortium, Lund University, Box 118, S-221 00, Lund, Sweden.
    Friction measurements of InAs nanowires on Silicon nitride by AFM manipulation2009In: Small, ISSN 1613-6810, Vol. 5, no 2, p. 203-207Article in journal (Refereed)
    Abstract [en]

    A study was conducted to perform friction measurements of InAs nanowires (NW) on silicon nitride (Si 3N 4) through atomic force microscopy (AFM) manipulation. The investigations revealed the friction force per unit length for sliding and static friction over a range of nanowire diameters. It was found that there is a significant difference between the coefficients of the two sliding modes for large wires. It was also found that the difference between the two sliding modes disappears at smaller diameters and the sliding friction becomes equal with the static friction. The AFM investigations were performed on a Nanoscope IIIa Dimension 3100, using rectangular cantilevers, with a nominal spring constant of 30 N m -1. The nanowires were manipulated, using the 'Retrace Lift' mode of the AFM controller. The friction force per unit length was gathered from the local curvature of the NWs, using standard elasticity theory.

  • 4.
    Conache, Gabriela
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Gray, Struan M.
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Ribayrol, Aline
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Fröberg, Linus
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Samuelson, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Montelius, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Comparative friction measurements of InAs nanowires on three substrates2010In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 108, no 9, p. 094307-094307-5Article in journal (Refereed)
    Abstract [en]

    We have investigated friction between InAs nanowires and three different substrates: SiO2, fluorosilanized SiO2, and Si3N4. The nanowires were pushed laterally with the tip of an atomic force microscope and the friction force per unit length for both static and sliding friction was deduced from the equilibrium shape of the bent wires. On all three substrates, thick wires showed a difference between sliding and static friction of up to three orders of magnitude. Furthermore, all substrates display a transition to stick-slip motion for nanowires with a diameter of less than about 40 nm. Hydrophobic and hydrophilic substrates display similar friction behavior suggesting that a condensed water layer does not strongly influence our results. The patterns and trends in the friction data are similar for all three substrates, which indicates that they are more fundamental in character and not specific to a single substrate. ©2010 American Institute of Physics.

  • 5.
    Conache, Gabriela
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Gray, Struan M.
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Ribayrol, Aline
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Fröberg, Linus
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Samuelson, Lars
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Montelius, Lars
    Lund University, Solid State Physics/Nanometer Consortium, Box 118, S-221 00, Lund, Sweden.
    Nanowire friction with an applied bias2009Conference paper (Refereed)
    Abstract [en]

    Recently, we have shown how the friction acting on nanowires pushed across a surface by an AFM tip can be determined by measuring the radius of curvature of the bent wire aŸer manipulation. This technique allows us to study the friction properties of an extended mesoscale contact. Our main focus has been to determine whether such contacts behave like macroscopic objects, in which dišerences between the 'true' and 'apparent' contact areas play a key role and friction varies linearly with the applied normal force, or whether they are more like atomic-scale point contacts, wheremore fundamental processes dominate and friction oŸen is independent of the normal force. In this work we show how the friction between InAs nanowires and an insulating silicon nitride layer on a conductive silicon substrate varies when a DC voltage is applied to the AFM tip during manipulation. e tip charges the capacitor formed by the wire and the grounded silicon back contact, giving rise to attractive Coulomb forces and thus increasing the contact pressure between the wire and the silicon nitride. In this way we can vary the normal force on the sliding surfaces using a single wire, with a constant structure and contact geometry. Using nanowires of about 40-50 nm diameter and a few microns in length we have applied tip voltages in the range +12 to -12 V. Simplemodeling indicates that these voltages su›ce to give similar levels of band-lling and depletion to when the same wires are used in working wrap-gate or back-gate devices. A monotonic increase of the sliding friction with the voltage applied on the tip was observed. is implies that the friction increases with the normal force and that this mesoscopic system behaves more like a macroscopic contact, despite the nanometer size of the contact in the direction of motion.

  • 6.
    Conache, Gabriela
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Ribayrol, Aline
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Fröberg, Linus
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Borgström, Magnus T.
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Samuelson, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Montelius, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Gray, Struan M.
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy2010In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 82, no 3Article in journal (Refereed)
    Abstract [en]

    By studying how nanowires lying on a surface bend when pushed by an atomic force microscopy tip we are able to measure the friction between them and the substrate. Here, we show how the friction between InAs nanowires and an insulating silicon nitride layer varies when a dc voltage is applied to the tip during manipulation. The bias charges the capacitor formed by the wire and the grounded silicon back contact. Electrostatic forces increase the contact pressure and allow us to tune the friction between the wire and the silicon nitride surface. Using nanowires of about 40-70 nm diameter and a few microns in length we have applied biases in the range +12 to -12 V. A monotonic increase of the sliding friction with voltage was observed. This increase in friction with the normal force implies that the mesoscopic nanowire-surface system behaves like a macroscopic contact, despite the nanometer size of the contact in the direction of motion. The demonstrated bias-controlled friction has potential applications in MEMS/NEMS devices.

  • 7.
    Pettersson, Håkan
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Bordag, Michael
    Leipzig University, Leipzig, Germany.
    Ribayrol, Aline
    Lund University, Lund, Sweden.
    Conache, Gabriela
    Lund University, Lund, Sweden.
    Fröberg, Linus
    Lund University, Lund, Sweden.
    Samuelson, Lars
    Lund University, Lund, Sweden.
    Montelius, Lars
    Lund University, Lund, Sweden.
    Shear stress measurements on InAs nanowires by AFM manipulation2007In: Bulletin of the American Physical Society, ISSN 0003-0503, Vol. 52, no 1Article in journal (Refereed)
    Abstract [en]

    In this paper, we report on a novel approach to measure shear stress between elastic nanowires and a SiO2 surface. The method is based on the fact that the curvature of an elastically deformed nanowire pinned to a flat surface contains information about the maximal static friction force, i.e., the shear stress between the wire and the surface. At rest, the deformed wire is kept in equilibrium by counterbalancing static friction forces and restoring elastic forces. In the present work, InAs nanowires are bent in a controlled manner using the tip of an atomic force microscope (AFM). After the manipulation, the curvature of the most bent state can be determined from AFM micrographs. Assuming bulk values for the Young’s modulus, the shear stress can be obtained from straight- forward analyses according to standard theory of elasticity. 

  • 8.
    Pettersson, Håkan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Conache, Gabriela
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Gray, Struan M.
    Lund University, Lund, Sweden.
    Bordag, Michael
    Leipzig University, Leipzig, Germany.
    Ribayrol, Aline
    Solid State Physics, Lund University, Lund, Sweden.
    Fröberg, Linus
    Solid State Physics, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics, Lund University, Lund, Sweden.
    Montelius, Lars
    Solid State Physics, Lund University, Lund, Sweden.
    Friction measurements on InAs NWs by AFM manipulation2008Conference paper (Refereed)
    Abstract [en]

    We discuss a new approach to measure the friction force between elastically deformed nanowires and a surface. The wires are bent, using an AFM, into an equilibrium shape determined by elastic restoring forces within the wire and friction between the wire and the surface. From measurements of the radius of curvature of the bent wires, elasticity theory allows the friction force per unit length to be calculated. We have studied friction properties of InAs nanowires deposited on SiO2, silanized SiO2 and Si3N4 substrates. The wires were typically from 0.5 to a few microns long, with diameters varying between 20 and 80 nm. Manipulation is done in a `Retrace Lift' mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. We will report on interesting static- and sliding friction experiments with nanowires on the different substrates, including how the friction force per unit length varies with the diameter of the wires.

  • 9.
    Pettersson, Håkan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Conache, Gabriela
    Lund University, Solid State Physics, Box 118, 22100, Lund, Sweden.
    Gray, Struan
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Ribayrol, Aline
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Fröberg, Linus
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Samuelson, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Montelius, Lars
    Avd. f. Fasta Tillståndets Fysik, Lunds Universitet, Sweden.
    Nanowire friction with an applied bias2010In: Bulletin of the American Physical Society: APS March Meeting 2010, Volume 55, Number 2, American Physical Society , 2010Conference paper (Refereed)
    Abstract [en]

    Recently, we have shown how the friction experienced by nanowires pushed by an AFM tip can be determined by measuring their radius of curvature after manipulation [1]. It is of fundamental interest to know whether the wires behave like macroscopic objects, or if they are more like true atomic-scale point contacts where friction becomes independent of the applied normal force. Here we study how the friction between InAs nanowires and a SiN layer on conductive silicon varies when a DC voltage is applied. The tip charges the capacitor formed by the wire and the silicon back contact, causing attractive Coulomb forces and so increasing the contact pressure. A monotonic increase of the sliding friction with voltage was observed. This implies that the friction increases with the normal force and that this mesoscopic system behaves more like a macroscopic contact, despite being only nanometers in size in the direction of motion.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf