The ongoing transformation in European district heating systems fromthe usage of fossil-based technologies to non-fossil heat supplies issummarised by a collection of 70 possibilities linked to decarbonisation.These possibilities are exemplified by 284 implemented, planned, orproposed cases. The 70 possibilities for decarbonised district heatinginclude using heat, connecting customers, moving heat, storing heat,removing carbon dioxide, and supplying heat together with somefeatures for the entire value chain, to heat usage from heat generation orrecycling. This collection of 70 possibilities is neither complete nor doesit contain any recommendations for the possibilities or advocate forspecific possibilities.The purpose of this project was to provide an extensive inventory ofdecarbonisation activities recently performed by district heating operators andother heat suppliers. These decarbonisation activities include the directsubstitution of heat obtained from the combustion of fossil fuels and indirectactions for obtaining more efficient district heating systems. These indirect actionsreduce costs and increase revenue, thereby improving the competitiveness ofdistrict heating. The time horizon, which is linked to the EU’s target for thereduction of greenhouse gas emissions by 55% compared to 1990 levels, is 2030.This inventory of early decarbonisation projects concerning district heatingsystems has revealed the following three key conclusions.First, decarbonisation activities can be divided into substituting and supportingpossibilities. Substituting possibilities in heat supply include linear supply fromrenewables, heat recycling from processes that generate excess heat, and non-fossilways of meeting peak heat demands during very cold days. The linear heat supplyis based on geothermal heat, solar heat, and electricity supply. Heat recycling ispossible from various processes related to biorefineries, hydrogen supply,petrochemical plants, electricity distribution, district cooling, data centres, batteryfactories, food supply chains, and sewage waters. Heat storage can make heatdelivery more independent of heat supply and provide additional opportunities toreduce peak loads. Supporting possibilities mainly comprise activities forobtaining lower temperatures in heat distribution networks to increase profitabilitywhen using low-temperature heat sources. These activities are performed whenconnecting customers, moving heat, and using heat. Another supporting activity isthe removal of biogenic carbon dioxide from the natural carbon cycle, although anappropriate international accounting system for its removal is still missing.Second, the decarbonisation possibilities of district heating systems differ fromthose of traditional systems based on fossil fuels. The availability ofdecarbonisation possibilities for district heating depends on local conditions,whereas fossil fuels are transported from available global resources and are usedworldwide. Hereby, decarbonised district heating systems will not be as uniformas traditional systems based on fossil fuels. The local conditions lower the degrees5of freedom for the implementation of substituting possibilities in existing buildingsand systems. Hence, it is important to adopt new methods for utilising the highestdegree of freedom possible in new buildings and systems.Third, the common denominators for the 70 identified possibilities are degrees offreedom for decarbonisation, action plans for achieving lower heat distributiontemperatures, the use of heat pumps for upgrading low-temperature supplies tomeet high-temperature demands, smart digitalisation options, clear supplyresponsibilities, favourable institutional frameworks, and digital planning models.These seven common denominators are efficient tools for obtaining decarbonisedand more efficient district heating systems in the future. These redesigned and newsystems will be somewhat different than traditional systems, which have beenbased on a district heating technology that was originally elaborated for systemsbased on fossil fuels.