hh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    David, Jennifer
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Valencia, Rafael
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Iagnemma, Karl
    Massachusetts Institute of Technology, Cambridge, MA, USA.
    Task Assignment and Trajectory Planning in Dynamic environments for Multiple Vehicles2016Conference paper (Refereed)
    Abstract [en]

    We consider the problem of finding collision-free trajectories for a fleet of automated guided vehicles (AGVs) working in ship ports and freight terminals. Our solution computes collision-free trajectories for a fleet of AGVs to pick up one or more containers and transport it to a given goal without colliding with other AGVs and obstacles. We propose an integrated framework for solving the goal assignment and trajectory planning problem minimizing the maximum cost overall vehicle trajectories using the classical Hungarian algorithm.To deal with the dynamics in the environment, we refine our final trajectories with CHOMP (Covariant Hamiltonianoptimization for motion planning) in order to trade off between path smoothness and dynamic obstacle avoidance.

  • 2.
    David, Jennifer
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Valencia, Rafael
    Carnegie Mellon University, Pittsburgh, USA.
    Philippsen, Roland
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Iagnemma, Karl
    Massachusetts Institute of Technology, Cambridge, USA.
    Local Path Optimizer for an Autonomous Truck in a Harbour Scenario2017Conference paper (Refereed)
    Abstract [en]

    Recently, functional gradient algorithms like CHOMP have been very successful in producing locally optimal motion plans for articulated robots. In this paper, we have adapted CHOMP to work with a non-holonomic vehicle such as an autonomous truck with a single trailer and a differential drive robot. An extended CHOMP with rolling constraints have been implemented on both of these setup which yielded feasible curvatures. This paper details the experimental integration of the extended CHOMP motion planner with the sensor fusion and control system of an autonomous Volvo FH-16 truck. It also explains the experiments conducted on the differential-drive robot. Initial experimental investigations and results conducted in a real-world environment show that CHOMP can produce smooth and collision-free trajectories for mobile robots and vehicles as well. In conclusion, this paper discusses the feasibility of employing CHOMP to mobile robots.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf