hh.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergman, Martin
    et al.
    Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Rosén, Bengt-Göran
    Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Eriksson, Lars
    Mechanical Engineering Industrial Design, Jönköping University, Jönköping, Sweden.
    Surface appearance and impression2012In: KEER 2012: Proceedings of the International Conference on Kansei Engineering and Emotion Research, KEER 2012 / [ed] Feng-Tyan Lin Ph.D., Tainan: Department of Industrial Design, National Cheng Kung University , 2012Conference paper (Refereed)
  • 2.
    Bergman, Martin
    et al.
    Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK).
    Rosén, Bengt-Göran
    Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK).
    Eriksson, Lars
    Jönköping University, Jönköping, Sweden .
    Anderberg, Cecilia
    Getinge Infection Control AB, Research & Development Department, Sweden.
    Surface design methodology: challenge the steel2013In: Metrology and Properties of Engineering Surfaces, 2013: Proceedings of the 14th International Conference, Taipei, Taiwan, June 17-21, 2013, Bristol, UK: Institute of Physics Publishing (IOPP), 2013, p. 192-199Conference paper (Refereed)
    Abstract [en]

    The way a product or material is experienced by its user could be different depending on the scenario. It is also well known that different materials and surfaces are used for different purposes. When optimizing materials and surface roughness for a certain something with the intention to improve a product, it is important to obtain not only the physical requirements, but also the user experience and expectations. Laws and requirements of the materials and the surface function, but also the conservative way of thinking about materials and colours characterize the design of medical equipment. The purpose of this paper is to link the technical- and customer requirements of current materials and surface textures in medical environments. By focusing on parts of the theory of Kansei Engineering, improvements of the companys' products are possible. The idea is to find correlations between desired experience or «feeling» for a product, -customer requirements, functional requirements, and product geometrical properties -design parameters, to be implemented on new improved products. To be able to find new materials with the same (or better) technical requirements but a higher level of user stimulation, the current material (stainless steel) and its surface (brushed textures) was used as a reference. The usage of focus groups of experts at the manufacturer lead to a selection of twelve possible new materials for investigation in the project. In collaboration with the topical company for this project, three new materials that fulfil the requirements -easy to clean and anti-bacterial came to be in focus for further investigation in regard to a new design of a washer-disinfector for medical equipment using the Kansei based Clean ability approach CAA. © Published under licence by IOP Publishing Ltd.

  • 3.
    Eriksson, Lars
    et al.
    Jönköping University, Jönköping, Sweden.
    Rosén, Bengt Göran
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Bergman, Martin
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Affective surface engineering- using soft and hard metrology to measure the Sensation and perception in surface properties2018In: Proceedings of NordDesign: Design in the Era of Digitalization, NordDesign 2018, The Design Society , 2018Conference paper (Refereed)
    Abstract [en]

    New surface treatments, novel material developments, and improved quality control procedures and advanced metrology instrumentation create a possibility to further develop competitiveness by the selection of “optimal” surface features”, to a product. The customers first apprehension of a product and the creation of desire is a very complex, but tempting process to learn more about. The interaction between the added quantitative- and the qualitative direct impressions with the customers known and unknown functional demands, social background, and expectations results in sensation and perception, partly possible to quantify and to great extent impossible to pin-down as numbers. Customer sensation and perception are much about psychological factors. There has been a strong industrial- and academic need and interest for methods and tools to quantify and linking product properties to the human response but a lack of studies of the impact of surfaces. This paper aims to introduce a novel approach to develop and join a human sensoric inspired metrology frame-work with qualitative gradings of apprehended impressions of products with varying surface properties. The aim is to establish the metrology framework to link measurable- and unmeasurable impressions of product surfaces to customer FEELING as exemplified by a set of industrial applications. In conclusions of the study, future research in Soft metrology is proposed to allow understanding and modelling of product perception and sensations in combination with a development of the Kansei Surface Engineering methodology and software tools. © Proceedings of NordDesign: Design in the Era of Digitalization, NordDesign 2018. All rights reserved.

  • 4.
    Rosén, Bengt-Göran
    et al.
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Eriksson, Lars
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS). Jönköping University, Jönköping, Sweden.
    Bergman, Martin
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Kansei, surfaces and perception engineering2016In: Surface Topography: Metrology and Properties, ISSN 2051-672X, Vol. 4, no 3, article id 033001Article in journal (Refereed)
    Abstract [en]

    The aesthetic and pleasing properties of a product are important and add significantly to the meaning and relevance of a product. Customer sensation and perception are largely about psychological factors. There has been a strong industrial and academic need and interest for methods and tools to quantify and link product properties to the human response but a lack of studies of the impact of surfaces. In this study, affective surface engineering is used to illustrate and model the link between customer expectations and perception to controllable product surface properties. The results highlight the use of the soft metrology concept for linking physical and human factors contributing to the perception of products. Examples of surface applications of the Kansei methodology are presented from sauna bath, health care, architectural and hygiene tissue application areas to illustrate, discuss and confirm the strength of the methodology. In the conclusions of the study, future research in soft metrology is proposed to allow understanding and modelling of product perception and sensations in combination with a development of the Kansei surface engineering methodology and software tools.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf