hh.sePublications
Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Berg, Alexander
    et al.
    Lund University, Lund, Sweden.
    Yazdi, Sadegh
    Technical University of Denmark, Lyngby, Denmark.
    Nowzari, Ali
    Lund University, Lund, Sweden.
    Storm, Kristian
    Lund University, Lund, Sweden.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Lund University, Lund, Sweden.
    Vainorius, Neimantas
    Lund University, Lund, Sweden.
    Samuelson, Lars
    Lund University, Lund, Sweden.
    Wagner, Jakob B.
    Technical University of Denmark, Lyngby, Denmark.
    Borgström, Magnus T.
    Lund University, Lund, Sweden.
    Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System2016In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 16, no 1, p. 656-662Article in journal (Refereed)
    Abstract [en]

    Nanowires have the potential to play an important role for next-generation light-emitting diodes. In this work, we present a growth scheme for radial nanowire quantum-well structures in the AlGaInP material system using a GaInP nanowire core as a template for radial growth with GaInP as the active layer for emission and AlGaInP as charge carrier barriers. The different layers were analyzed by X-ray diffraction to ensure lattice-matched radial structures. Furthermore, we evaluated the material composition and heterojunction interface sharpness by scanning transmission electron microscopy energy dispersive X-ray spectroscopy. The electro-optical properties were investigated by injection luminescence measurements. The presented results can be a valuable track toward radial nanowire light-emitting diodes in the AlGaInP material system in the red/orange/yellow color spectrum. © 2015 American Chemical Society.

  • 2.
    Hussain, Laiq
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Karimi, Mohammad
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Berg, Alexander
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Gustafsson, Anders
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes2017In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 28, no 48, article id 485205Article in journal (Refereed)
    Abstract [en]

    Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed. © 2017 IOP Publishing Ltd

  • 3.
    Jafari Jam, Reza
    et al.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Kvennefors, Anders
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Graczyk, Mariusz
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Maximov, Ivan
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    III-V nanowire synthesis by use of electrodeposited gold particles2015In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, no 1, p. 134-138Article in journal (Refereed)
    Abstract [en]

    Semiconductor nanowires are great candidates for building novel electronic devices. Considering the cost of fabricating such devices, substrate reuse and gold consumption are the main concerns. Here we report on implementation of high throughput gold electrodeposition for selective deposition of metal seed particles in arrays defined by lithography for nanowire synthesis. By use of this method, a reduction in gold consumption by a factor of at least 300 was achieved, as compared to conventional thermal evaporation for the same pattern. Because this method also facilitates substrate reuse, a significantly reduced cost of the final device is expected. We investigate the morphology, crystallography, and optical properties of InP and GaAs nanowires grown from electrodeposited gold seed particles and compare them with the properties of nanowires grown from seed particles defined by thermal evaporation of gold. We find that nanowire synthesis, as well as the material properties of the grown nanowires are comparable and quite independent of the gold deposition technique. On the basis of these results, electrodeposition is proposed as a key technology for large-scale fabrication of nanowire-based devices.

  • 4.
    Jafari Jam, Reza
    et al.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Kvennefors, Anders
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Graczyk, Mariusz
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Maximov, Ivan
    Division of Solid State Physics/Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nanoimprint Lithography and Gold Electroplating for Nanowire Seed Particle Definition2013Conference paper (Refereed)
  • 5.
    Jain, Vishal
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Barrigon, Enrique
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Bosco, Lorenzo
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Schroff, Shishi
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Boix, Virginia
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Karimi, Mohammad
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jafari Jam, Reza
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Berg, Alexander
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors2017In: ACS Photonics, E-ISSN 2330-4022, Vol. 4, no 11, p. 2693-2698Article in journal (Refereed)
    Abstract [en]

    Avalanche photodetectors (APDs) are key components in optical communication systems due to their increased photocurrent gain and short response time as compared to conventional photodetectors. A detector design where the multiplication region is implemented in a large band gap material is desired to avoid detrimental Zener tunneling leakage currents, a concern otherwise in smaller band gap materials required for absorption at 1.3/1.55 μm. Self-assembled III-V semiconductor nanowires offer key advantages such as enhanced absorption due to optical resonance effects, strain-relaxed heterostructures, and compatibility with mainstream silicon technology. Here, we present electrical and optical characteristics of single InP and InP/InAsP nanowire APD structures. Temperature-dependent breakdown characteristics of p+-n-n+ InP nanowire devices were investigated first. A clear trap-induced shift in breakdown voltage was inferred from I-V measurements. An improved contact formation to the p+-InP segment was observed upon annealing, and its effect on breakdown characteristics was investigated. The band gap in the absorption region was subsequently varied from pure InP to InAsP to realize spatially separate absorption and multiplication APDs in heterostructure nanowires. In contrast to the homojunction APDs, no trap-induced shifts were observed for the heterostructure APDs. A gain of 12 was demonstrated for selective optical excitation of the InAsP segment. Additional electron-beam-induced current measurements were carried out to investigate the effect of local excitation along the nanowire on the I-V characteristics. Simulated band profiles and electric field distributions support our interpretation of the experiments. Our results provide important insight for optimization of avalanche photodetector devices based on III-V nanowires. © 2017 American Chemical Society

  • 6.
    Jain, Vishal
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and Nano, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Karimi, Mohammad
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and Nano, Lund University, Lund, Sweden.
    Hussain, Laiq
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and Nano, Lund University, Lund, Sweden.
    Aghaeipour, Mahtab
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Berg, Alexander
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Nylund, Gustav
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Capasso, Federico
    Harvard University, Cambridge, United States of America.
    Samuelson, Lars
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and Nano, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and Nano, Lund University, Lund, Sweden.
    Bias-dependent spectral tuning in InP nanowire-based photodetectors2017In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 28, no 11, article id 114006Article in journal (Refereed)
    Abstract [en]

    Nanowire array ensembles contacted in a vertical geometry are extensively studied and considered strong candidates for next generations of industrial scale optoelectronics. Key challenges in this development deal with optimization of the doping profile of the nanowires and the interface between nanowires and transparent top contact. Here we report on photodetection characteristics associated with doping profile variations in InP nanowire array photodetectors. Bias-dependent tuning of the spectral shape of the responsivity is observed which is attributed to a Schottky-like contact at the nanowire-ITO interface. Angular dependent responsivity measurements, compared with simulated absorption spectra, support this conclusion. Furthermore, electrical simulations unravel the role of possible self-gating effects in the nanowires induced by the ITO/SiOx wrap-gate geometry. Finally, we discuss possible reasons for the observed low saturation current at large forward biases.  

  • 7.
    Jain, Vishal
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Lindgren, David
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Hussein, Laiq
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Wallentin, Jesper
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
    Borgström, Magnus T.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Gustafsson, Anders
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Large area photodetectors based on InP NWs with InAs/InAsP QWs2014Conference paper (Refereed)
    Abstract [en]

    Focal plane arrays have a widespread use in infrared imaging, which often rely on cryogenic cooling to curtail the dark current level necessary for a reasonable signal-to-noise ratio. Quantum well (QW) infrared photodetectors are uniform over large areas, but suffer from a severe drawback related to the selection rules for intersubband absorption. An interesting alternative is self-assembled III-V nanowires offering a key advantage owing to the enhanced absorption by optical resonance effects and strain relaxation.We present electrical and optical results from large ensembles of n+-i-n+ InP NWs, axially grown on InP substrates with InAs/InAsP QWs embedded within the i-segment, designed for both interband and intersubband detection. The NWs are contacted in a vertical geometry using 50 nm SiO2 as the insulating layer and ITO as the top contact. We first investigate the crystal quality of the InAsP QWs grown in 180 nm diameter NWs, using PL, CL and TEM. To achieve more abrupt InAs/InAsP QWs, we grow 130 nm diameter NWs and deplete the In present in the Au catalysts. The effect of n-doping on the device performance is studied by fabricating two different NW geometries, with and without an n+-segment grown before the nominal i-segment in the NW. In addition, the position of the QWs within the i-segment is varied to further scrutinize effects related to doping and crystal structure. Finally, we report spectrally resolved photocurrent results from the QWs in the near-infrared region and discuss about the further developments needed for intersubband detection.

  • 8.
    Jain, Vishal
    et al.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Lindgren, David
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Large Area Photodetectors at 1.3/1.55 μm Based on InP/InAsP NWs2014Conference paper (Refereed)
    Abstract [en]

    Optical communication systems benefit a lot from APDs due to their increased photocurrent gain as compared to conventional photodetectors. An avalanche region in a high bandgap material is especially useful to avoid the tunneling leakage currents in smaller bandgap materials needed for absorption at 1.3/1.55 µm wavelengths. Self-assembled III-V semiconductor nanowires have a key advantage owing to the enhanced absorption due to optical resonance effects and the strain relaxation in NWs, thus facilitating monolithic integration of different heterostructures on cheaper substrates. Here, we present electrical and optical results from large ensembles of InP/InAsP NWs, axially grown on p+ InP substrates. The NW base consists of an InP p-n junction acting as the avalanche region followed by an InP/InAsP absorption region, and ending with a top InP n+-segment. The 130nm diameter NW arrays are contacted in a vertical geometry using SiO2 as the insulating layer and ITO as the top contact. The n-doping in the avalanche region is varied to study it’s influence on the avalanche mechanism. Also the bandgap in the absorption region is varied from pure InP to smaller bandgap InAsP by varying the As content. Clear interband signals from different crystal phases of InP/InAsP are observed in photocurrent spectroscopy. Moreover, the photocurrent spectra are consistent with spatially resolved photoluminescence signals. We also report on polarization and angle dependent photocurrent response of the NW array.

  • 9.
    Jain, Vishal
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Lund University, Lund, Sweden.
    Wallentin, Jesper
    Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Lund University, Lund, Sweden.
    Messing, Maria E.
    Lund University, Lund, Sweden.
    Asoli, Damir
    Ideon Science Park, Sol Voltaics AB, Lund, Sweden.
    Graczyk, Mariusz
    Lund University, Lund, Sweden.
    Witzigmann, Bernd
    University of Kassel, Kassel, Germany .
    Capasso, Federico
    Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Study of photocurrent generation in InP nanowire-based p+–i–n+ photodetectors2014In: Nano Reseach, ISSN 1998-0124, E-ISSN 1998-0000, Vol. 7, no 4, p. 544-552Article in journal (Refereed)
    Abstract [en]

    We report on electrical and optical properties of p+-i-n+ photodetectors/solar cells based on square millimeter arrays of InP nanowires grown on InP substrates. The study includes a sample series where the p+-segment length was varied between 0 and 250nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p+-segment length. Without p+-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p+-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the nanowires, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the ZB and WZ InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, TEM as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations. © 2014 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  • 10.
    Jain, Vishal
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Wallentin, Jesper
    Physics Department, Lund University, Lund, Sweden.
    Borgström, Magnus
    Physics department, Lund university, Lund, Sweden.
    Storm, Kristian
    Physics Department, Lund University, Lund, Sweden.
    Landin, Lars
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Wickert, Peter
    Sol Voltaics AB, Lund, Sweden.
    Capasso, Federico
    Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Physics Department, Lund university, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    A comparative study of nanowire based infrared p+-i-n+ photodetectors2012Conference paper (Refereed)
    Abstract [en]

    We present a comparative study of electrical and optical properties of two types of p+-i-n+ photodetectors based on self-assembled ensembles of vertical InP nanowires (NWs) monolithically grown on InP. The detectors differ in the type of p+ contact, one detector geometry has p+-i-n+ segments integrated into the NWs (type A) while the other detector has i-n+ NW segments grown directly on a p+ substrate(type B). The samples were prepared by first depositing 80 nm Au nanoparticles on a p+ InP substrate using an aerosol technique and subsequently growing NWs using MOVPE. The NWs have a polytypecrystal structure of alternating wurtzite and zincblende segments. The processing of the detectors include deposition of SiO2, followed by an etching step to remove the oxide from the tip of the NWs, and finally sputtering of ITO on 1x1 mm2 device areas. The two most prominent differences between the detectors concern the current-voltage (I-V) characteristics and the spatial location of generated photocurrent. From spectrally resolved photocurrent measurements, we conclude that the photocurrent in detector type A is primarily generated in the NWs, whereas the photocurrent in type B detectors mainly stems from the substrate. Photogenerated carriers in the substrate diffuse to the NWs where they are effectively funnelled into the NWs. The I-V characteristics of the type A detector displays a non-trivial transport behaviour for forward biases, whereas type B shows excellent rectifying behavior with an ideality factor of about 2.5. We will discuss detailed analysis of the spectral fingerprints of the two detector types revealing the mixed crystal phase of the polytype NWs and bandstructure effects, temperature dependence of the I-V characteristics and typical photodetector parameters.

  • 11.
    Jain, Vishal
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Wallentin, Jesper
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Asoli, Damir
    Sol Voltaics AB, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Capasso, Federico
    School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
    Samuelson, Lars
    Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and the Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Processing and Characterization of Nanowire Arrays for Photodetectors2015In: Nano-Structures for Optics and Photonics: Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion / [ed] Baldassare Di Bartolo, John Collins & Luciano Silvestri, Dordrecht: Springer, 2015, p. 511-512Conference paper (Refereed)
    Abstract [en]

    We present a fabrication scheme of contacting arrays of vertically standing nanowires (NW) for LEDs (Duan et al. Nature 409:66–69, 2001), photodetectors (Wang et al. Science (NY) 293:1455–1457, 2001) or solar cell applications (Wallentin et al. Science (NY) 339:1057–1060, 2013). Samples were prepared by depositing Au films using nano-imprint lithography (Må rtensson et al. Nano Lett 4:699–702, 2004) which are used as catalysts for NW growth in a low-pressure metal organic vapour phase epitaxy system where III-V precursors and dopant gases are flown at elevated temperatures which lead to the formation of NWs with different segments (Borgström et al. Nano Res 3:264–270, 2010). An insulating SiO2 layer is then deposited and etched from the top segments of the NWs followed by sputtering of a transparent top conducting oxide and opening up 1 × 1 mm2 device areas through a UV lithography step and etching of the top contact from non-device areas. A second UV lithography step was subsequently carried out to open up smaller windows on the ITO squares for bond pad definition, followed by metallization and lift-off; and the substrate is used as back contact. We also report on the electrical and optical properties of near-infrared p+−i−n+ photodetectors/solar cells based on square millimeter ensembles of InP nanowires grown on InP substrates. The study includes a sample series where the p +-segment length was varied between 0 and 250 nm, as well as solar cell samples with 9.3 % efficiency with similar design. The NWs have a complex modulated crystal structure of alternating wurtzite and zincblende segments, a polytypism that depends on dopant type. The electrical data for all samples display excellent rectifying behavior with an ideality factor of about 2 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p +-segment length. Without p +-segment in the NWs, photogenerated carriers funneled from the substrate into the NWs contribute significantly to the photocurrent. Adding a p +-segment shifts the depletion region up into the i-region of the NWs reducing the substrate contribution to photocurrent while strongly improving the collections of carriers generated in the NWs, in agreement with theoretical modeling (Fig. 48.1). © Springer Science+Business Media Dordrecht 2015.

  • 12.
    Karimi, Mohammad
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden & Sol Voltaics AB, Lund, Sweden.
    Limpert, Steven
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Zeng, Xulu
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Geijselaers, Irene
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Fu, Ying
    Department of Applied Physics, Royal Institute of Technology (KTH), Solna, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Linke, Heiner
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared2018In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 18, no 1, p. 365-372Article in journal (Refereed)
    Abstract [en]

    Semiconductor nanowires have great potential for realizing broadband photodetectors monolithically integrated with silicon. However, the spectral range of such detectors has so far been limited to selected regions in the ultraviolet, visible and near-infrared. Here, we report on the first intersubband nanowire heterostructure array photodetectors exhibiting a spectrally resolved photoresponse from the visible to long-wavelength infrared. In particular, the infrared response from 3-20 mm is enabled by intersubband transitions in low-bandgap InAsP quantum discs synthesized axially within InP nanowires. The intriguing optical characteristics, including unexpected sensitivity to normal incident radiation, are explained by excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors. Our results provide a generalizable insight into how broadband nanowire photodetectors may be designed, and how engineered nanowire heterostructures open up new fascinating opportunities for optoelectronics.

  • 13.
    Karimi, Mohammad
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Heurlin, Magnus
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Nowzari, Ali
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Hussain, Laiq
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Lindgren, David
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Stehr, Jan Eric
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Buyanova, Irina A.
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Gustafsson, Anders
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Borgström, Magnus T.
    Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors2017In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, no 6, p. 3356-3362Article in journal (Refereed)
    Abstract [en]

    The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n+–i–n+ InP nanowires periodically ordered in arrays. The nanowires were grown by metal–organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 μm and a bias-tunable responsivity reaching 7 A/W@1.38 μm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiOx/ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors. © 2017 American Chemical Society.

  • 14.
    Nowzari, Ali
    et al.
    Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    Heurlin, Magnus
    Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    Storm, Kristian
    Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    Hosseinnia, Ali
    Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    Anttu, Nicklas
    Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    Borgström, Magnus T.
    Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    Samuelson, Lars
    Division of Solid State Physics and The Nanometer Structure Consortium, Lund University, Sweden.
    A Comparative Study of Absorption in Vertically and Laterally Oriented InP Core–Shell Nanowire Photovoltaic Devices2015In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, no 3, p. 1809-1814Article in journal (Refereed)
    Abstract [en]

    We have compared the absorption in InP core-shell nanowire p-i-n junctions in lateral and vertical orientation. Arrays of vertical core-shell nanowires with 400 nm pitch and 280 nm diameter, as well as corresponding lateral single core-shell nanowires, were configured as photovoltaic devices. The photovoltaic characteristics of the samples, measured under 1 sun illumination, showed a higher absorption in lateral single nanowires compared to that in individual vertical nanowires, arranged in arrays with 400 nm pitch. Electromagnetic modeling of the structures confirmed the experimental observations and showed that the absorption in a vertical nanowire in an array depends strongly on the array pitch. The modeling demonstrated that, depending on the array pitch, absorption in a vertical nanowire can be lower or higher than that in a lateral nanowire with equal absorption predicted at a pitch of 510 nm for our nanowire geometry. The technology described in this Letter facilitates quantitative comparison of absorption in laterally and vertically oriented core-shell nanowire p-i-n junctions and can aid in the design, optimization, and performance evaluation of nanowire-based core-shell photovoltaic devices. © 2014 American Chemical Society.

  • 15.
    Park, Min-Su
    et al.
    Center for Optoelectronic Convergence Systems, KIST (Korean Institute of Science and Technology), Seoul, Republic of Korea.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Lund Univ, Solid State Phys & Nanometer Struct Consortium, Lund, Sweden.
    Lee, E.H.
    Center for Optoelectronic Convergence Systems, KIST (Korean Institute of Science and Technology), Seoul, Republic of Korea.
    Kim, S.H.
    Center for Optoelectronic Convergence Systems, KIST (Korean Institute of Science and Technology), Seoul, Republic of Korea.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Lund Univ, Solid State Phys & Nanometer Struct Consortium, Lund, Sweden.
    Wang, Q
    Acreo Swedish ICT AB, Electrum Lab Nano & Microtechnol Fab, Kista, Sweden.
    Song, JD
    Center for Optoelectronic Convergence Systems, KIST (Korean Institute of Science and Technology), Seoul, Republic of Korea.
    Choi, WJ
    Center for Optoelectronic Convergence Systems, KIST (Korean Institute of Science and Technology), Seoul, Republic of Korea.
    InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K2014In: Electronics Letters, ISSN 0013-5194, E-ISSN 1350-911X, Vol. 50, no 23, p. 1731-1733Article in journal (Refereed)
    Abstract [en]

    High-temperature operating performance of p-i-p quantum dots-in-awell infrared photodetectors (QDIPs) is successfully demonstrated. The optically active region consists of 10 layers of p-doped selfassembled InAs quantum dots (QDs) asymmetrically positioned in In0.15Ga0.85As quantum wells (QWs). The dark current is suppressed by an incorporated superlattice (SL) structure composed of 10 pairs of AlGaAs/GaAs heterostructure. The very low recorded dark current makes the fabricated p-i-p QDIPs suitable for high-temperature operation. The measured photoresponse reveals broad mid-wave infrared (MWIR) detection up to 200 K. © The Institution of Engineering and Technology 2014

  • 16.
    Paschoal Jr., Waldomiro
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Kumar, Sandeep
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jacobsson, Daniel
    Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Johannes, Andreas
    Institute for Solid State Physics, Jena University, Jena, Germany.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Canali, Carlo M.
    Department of Physics and Electrical Engineering, Linneaus University, Kalmar, Sweden.
    Pertsova, Anna
    Department of Physics and Electrical Engineering, Linneaus University, Kalmar, Sweden.
    Ronning, Carsten
    Institute for Solid State Physics, Jena University, Jena, Germany.
    Dick, Kimberly A.
    Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Magnetoresistance in Mn ion-implanted GaAs:Zn nanowires2014In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 104, no 15, article id 153112Article in journal (Refereed)
    Abstract [en]

    We have investigated the magnetoresistance (MR) in a series of Zn doped (p-type) GaAs nanowires implanted with different Mn concentrations. The nanowires with the lowest Mn concentration (~0.0001%) exhibit a low resistance of a few kΩ at 300K and a 4% positive MR at 1.6K, which can be well described by invoking a spin-split subband model. In contrast, nanowires with the highest Mn concentration (4%) display a large resistance of several MΩ at 300K and a large negative MR of 85% at 1.6K. The large negative MR is interpreted in terms of spin-dependent hopping in a complex magnetic nanowire landscape of magnetic polarons, separated by intermediate regions of Mn impurity spins. Sweeping the magnetic field back and forth for the 4% sample reveals a hysteresis that indicates the presence of a weak ferromagnetic phase. We propose co-doping with Zn to be a promising way to reach the goal of realizing ferromagnetic Ga1-xMnxAs nanowires for future nanospintronics. © 2014 AIP Publishing LLC.

  • 17.
    Suyatin, Dmitry
    et al.
    Division of Solid State Physics, Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Jain, Vishal
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Division of Solid State Physics, Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Nebol’sin, Valery A.
    Voronezh State Technical University, Voronezh, Russian Federation.
    Trägårdh, Johanna
    Division of Solid State Physics, Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Messing, Maria
    Division of Solid State Physics, Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Wagner, Jakob B.
    Division of Polymer and Materials Chemistry, Lund University, Lund, Sweden.
    Persson, Olof
    Division of Synchrotron Radiation Research, Lund University, Lund, Sweden.
    Timm, Rainer
    Division of Synchrotron Radiation Research, Lund University, Lund, Sweden.
    Mikkelsen, Anders
    Division of Synchrotron Radiation Research, Lund University, Lund, Sweden.
    Maximov, Ivan
    Division of Solid State Physics, Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Samuelson, Lars
    Division of Solid State Physics, Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Division of Solid State Physics, Nanometer Structure Consortium, Lund University, Lund, Sweden.
    Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning2014In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 5, article id 3221Article in journal (Refereed)
    Abstract [en]

    Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (∼0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (∼10 17 m-2) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties. © 2014 Macmillan Publishers Limited.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf