hh.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Byttner, Stefan
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Nowaczyk, Sławomir
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Prytz, Rune
    Volvo Group Trucks Technology, Gothenburg, Sweden.
    Rögnvaldsson, Thorsteinn
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    A field test with self-organized modeling for knowledge discovery in a fleet of city buses2013In: 2013 IEEE International Conference on Mechatronics and Automation (ICMA 2013) / [ed] Shuxiang Guo, Piscataway, NJ: IEEE Press, 2013, p. 896-901, article id 6618034Conference paper (Refereed)
    Abstract [en]

    Fleets of commercial vehicles represent an excellent real life setting for ubiquitous knowledge discovery. There are many electronic control units onboard a modern bus or truck, with hundreds of signals being transmitted between them on the controller area network. The growing complexity of the vehicles has lead to a significant desire to have systems for fault detection, remote diagnostics and maintenance prediction. This paper aims to show that it is possible to discover useful diagnostic knowledge by a self-organized algorithm in the scenario of a fleet of city buses. The approach is demonstrated as a process consisting of two parts; Unsupervised modeling (where interesting features are discovered) and Guided search (where the previously found features are coupled to additional information sources). The modeling part searches for simple linear models in a group of vehicles, where interesting features are selected based on both non-randomness in relations and variability in the group. It is shown in an eight months long data collection study that this approach was able to discover features related to broken wheelspeed sensors. Strikingly, deviations in these features (for the vehicles with broken sensors) can be observed up to several months before a breakdown occur. This potentially allows for sufficient time to schedule the vehicle for maintenance and prepare the workshop with relevant components. © 2013 IEEE.

  • 2.
    Nowaczyk, Sławomir
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Intelligent Systems´ laboratory.
    Byttner, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Intelligent Systems´ laboratory.
    Prytz, Rune
    Volvo Group Trucks Technology, Göteborg, Sweden.
    Ideas for Fault Detection Using Relation Discovery2012In: / [ed] Lars Karlsson and Julien Bidot, Linköping: Linköping University Electronic Press, 2012, p. 1-6Conference paper (Refereed)
    Abstract [en]

    Predictive maintenance is becoming more and more important in many industries, especially taking into account the increasing focus on offering uptime guarantees to the customers. However, in automotive industry, there is a limitation on the engineering effort and sensor capabilities available for that purpose. Luckily, it has recently become feasible to analyse large amounts of data on-board vehicles in a timely manner. This allows approaches based on data mining and pattern recognition techniques to augment existing, hand crafted algorithms.

    Automated deviation detection offers both broader applicability, by virtue of detecting unexpected faults and cross-analysing data from different subsystems, as well as higher sensitivity, due to its ability to take into account specifics of a selected, small set of vehicles used in a particular way under similar conditions.

    In a project called Redi2Service we work towards developing methods for autonomous and unsupervised relationship discovery, algorithms for detecting deviations within those relationships (both considering different moments in time, and different vehicles in a fleet), as well as ways to correlate those deviations to known and unknown faults. In this paper we present the type of data we are working with, justify why we believe relationships between signals are a good knowledge representation, and show results of early experiments where supervised learning was used to evaluate discovered relations.

  • 3.
    Nowaczyk, Sławomir
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Prytz, Rune
    Volvo Group Trucks Technology, Advanced Technology & Research, Göteborg, Sweden.
    Rögnvaldsson, Thorsteinn
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Byttner, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Towards a Machine Learning Algorithm for Predicting Truck Compressor Failures Using Logged Vehicle Data2013In: Twelfth Scandinavian Conference on Artificial Intelligence / [ed] Manfred Jaeger, Thomas Dyhre Nielsen, Paolo Viappiani, Amsterdam: IOS Press, 2013, p. 205-214Conference paper (Refereed)
    Abstract [en]

    Predictive maintenance is becoming more and more important for the commercial vehicle manufactures, as focus shifts from product- to service-based operation. The idea is to provide a dynamic maintenance schedule, fulfilling specific needs of individual vehicles. Luckily, the same shift of focus, as well as technological advancements in the telecommunication area, make long-term data collection more widespread, delivering the necessary data.

    We have found, however, that the standard attribute-value knowledge representation is not rich enough to capture important dependencies in this domain. Therefore, we are proposing a new rule induction algorithm, inspired by Michalski's classical AQ approach. Our method is aware that data concerning each vehicle consists of time-ordered sequences of readouts. When evaluating candidate rules, it takes into account the composite performance for each truck, instead of considering individual readouts in separation. This allows us more exibility, in particular in defining desired prediction horizon in a fuzzy, instead of crisp, manner. © 2013 The authors and IOS Press. All rights reserved.

  • 4.
    Prytz, Rune
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research. Volvo Group Trucks Technology, Malmö, Sweden.
    Machine learning methods for vehicle predictive maintenance using off-board and on-board data2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Vehicle uptime is getting increasingly important as the transport solutions become more complex and the transport industry seeks new ways of being competitive. Traditional Fleet Management Systems are gradually extended with new features to improve reliability, such as better maintenance planning. Typical diagnostic and predictive maintenance methods require extensive experimentation and modelling during development. This is unfeasible if the complete vehicle is addressed as it would require too much engineering resources.

    This thesis investigates unsupervised and supervised methods for predicting vehicle maintenance. The methods are data driven and use extensive amounts of data, either streamed, on-board data or historic and aggregated data from off-board databases. The methods rely on a telematics gateway that enables vehicles to communicate with a back-office system. Data representations, either aggregations or models, are sent wirelessly to an off-board system which analyses the data for deviations. These are later associated to the repair history and form a knowledge base that can be used to predict upcoming failures on other vehicles that show the same deviations.

    The thesis further investigates different ways of doing data representations and deviation detection. The first one presented, COSMO, is an unsupervised and self-organised approach demonstrated on a fleet of city buses. It automatically comes up with the most interesting on-board data representations and uses a consensus based approach to isolate the deviating vehicle. The second approach outlined is a super-vised classification based on earlier collected and aggregated vehicle statistics in which the repair history is used to label the usage statistics. A classifier is trained to learn patterns in the usage data that precede specific repairs and thus can be used to predict vehicle maintenance. This method is demonstrated for failures of the vehicle air compressor and based on AB Volvo’s database of vehicle usage statistics.

  • 5.
    Prytz, Rune
    et al.
    Volvo Technology, Göteborg, Sweden.
    Nowaczyk, Sławomir
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Intelligent systems (IS-lab).
    Byttner, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Towards relation discovery for diagnostics2011In: Proceedings of the First International Workshop on Data Mining for Service and Maintenance, New York, NY: Association for Computing Machinery (ACM), 2011, p. 23-27Conference paper (Refereed)
    Abstract [en]

    It is difficult to implement predictive maintenance in the automotive industry as it looks today, since the sensor capabilities and engineering effort available for diagnostic purposes is limited. It is, in practice, impossible to develop diagnostic algorithms capable of detecting many different kinds of faults that would be applicable to a wide range of vehicle configurations and usage patterns. However, it is now becoming feasible to obtain and analyse on-board data on vehicles as they are being used. It makes automatic data-mining methods an attractive alternative, since they are capable of adapting themselves to specific vehicle configurations and usage. In order to be useful, though, such methods need to be able to detect interesting relations between a large number of available signals. This paper presents an unsupervised method for discovering useful relations between measured signals in a Volvo truck, both during normal operations and when a fault has occurred. The interesting relationships are found in a two-step procedure. In the first step, we identify a set of “good” models, by establishing an MSE threshold over the complete data set. In the second step, we estimate model parameters over time, in order to capture the dynamic behaviour of the system. We use two different approaches here, the LASSO method and the Recursive Least Squares filter. The usefulness of obtained relations is then evaluated using supervised learning to separate different classes of faults.

  • 6.
    Prytz, Rune
    et al.
    Volvo Group Trucks Technology, Advanced Technology & Research, Göteborg, Sweden.
    Nowaczyk, Sławomir
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Rögnvaldsson, Thorsteinn
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Byttner, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Analysis of Truck Compressor Failures Based on Logged Vehicle Data2013In: / [ed] Hamid Reza Arabnia, CSREA Press, 2013Conference paper (Refereed)
    Abstract [en]

    In multiple industries, including automotive one, predictive maintenance is becoming more and more important, especially since the focus shifts from product to service-based operation. It requires, among other, being able to provide customers with uptime guarantees. It is natural to investigate the use of data mining techniques, especially since the same shift of focus, as well as technological advancements in the telecommunication solutions, makes long-term data collection more widespread.

    In this paper we describe our experiences in predicting compressor faults using data that is logged on-board Volvo trucks. We discuss unique challenges that are posed by the specifics of the automotive domain. We show that predictive maintenance is possible and can result in significant cost savings, despite the relatively low amount of data available. We also discuss some of the problems we have encountered by employing out-of-the-box machine learning solutions, and identify areas where our task diverges from common assumptions underlying the majority of data mining research.

  • 7.
    Prytz, Rune
    et al.
    Volvo Group Trucks Technology, Gothenburg, Sweden.
    Nowaczyk, Sławomir
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Rögnvaldsson, Thorsteinn
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Byttner, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Predicting the need for vehicle compressor repairs using maintenance records and logged vehicle data2015In: Engineering applications of artificial intelligence, ISSN 0952-1976, E-ISSN 1873-6769, Vol. 41, p. 139-150Article in journal (Refereed)
    Abstract [en]

    Methods and results are presented for applying supervised machine learning techniques to the task of predicting the need for repairs of air compressors in commercial trucks and buses. Prediction models are derived from logged on-board data that are downloaded during workshop visits and have been collected over three years on large number of vehicles. A number of issues are identified with the data sources, many of which originate from the fact that the data sources were not designed for data mining. Nevertheless, exploiting this available data is very important for the automotive industry as means to quickly introduce predictive maintenance solutions. It is shown on a large data set from heavy duty trucks in normal operation how this can be done and generate a profit.

    Random forest is used as the classifier algorithm, together with two methods for feature selection whose results are compared to a human expert. The machine learning based features outperform the human expert features, which supports the idea to use data mining to improve maintenance operations in this domain. © 2015 Elsevier Ltd.

  • 8.
    Rögnvaldsson, Thorsteinn
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Byttner, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Prytz, Rune
    Volvo Group Trucks Technology, Göteborg, Sweden.
    Nowaczyk, Sławomir
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Svensson, Magnus
    Volvo Group Trucks Technology, Göteborg, Sweden.
    Wisdom of Crowds for Intelligent Monitoring of Vehicle FleetsManuscript (preprint) (Other academic)
    Abstract [en]

    An approach is presented and experimentally demonstrated where consensus among distributed self-organized agents is used for intelligent monitoring of mobile cyberphysical systems (in this case vehicles). The demonstration is done on test data from a 30 month long field test with a city bus fleet under real operating conditions. The self-organized models operate on-board the systems, like embedded agents, communicate their states over a wireless communication link, and their states are compared off-line to find systems that deviate from the consensus. In this way is the group (the fleet) of systems used to detect errors that actually occur. This can be used to build up a knowledge base that can be accumulated over the life-time of the systems.

  • 9.
    Rögnvaldsson, Thorsteinn
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Nowaczyk, Sławomir
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Byttner, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Prytz, Rune
    Volvo Group Trucks Technology, Göteborg, Sweden.
    Svensson, Magnus
    Volvo Group Trucks Technology, Göteborg, Sweden.
    Self-monitoring for maintenance of vehicle fleets2018In: Data mining and knowledge discovery, ISSN 1384-5810, E-ISSN 1573-756X, Vol. 32, no 2, p. 344-384Article in journal (Refereed)
    Abstract [en]

    An approach for intelligent monitoring of mobile cyberphysical systems is described, based on consensus among distributed self-organised agents. Its usefulness is experimentally demonstrated over a long-time case study in an example domain: a fleet of city buses. The proposed solution combines several techniques, allowing for life-long learning under computational and communication constraints. The presented work is a step towards autonomous knowledge discovery in a domain where data volumes are increasing, the complexity of systems is growing, and dedicating human experts to build fault detection and diagnostic models for all possible faults is not economically viable. The embedded, self-organised agents operate on-board the cyberphysical systems, modelling their states and communicating them wirelessly to a back-office application. Those models are subsequently compared against each other to find systems which deviate from the consensus. In this way the group (e.g. a fleet of vehicles) is used to provide a standard, or to describe normal behaviour, together with its expected variability under particular operating conditions. The intention is to detect faults without the need for human experts to anticipate them beforehand. This can be used to build up a knowledge base that accumulates over the life-time of the systems. The approach is demonstrated using data collected during regular operation of a city bus fleet over the period of almost four years. © 2017 The Author(s)

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf