hh.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Johannesson, Karin M.
    et al.
    IFM Ecology, Linköping University, Linköping, Sweden.
    Kynkäänniemi, Pia
    Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Ulén, Barbro
    Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Weisner, Stefan E.B.
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Environmental Science, Wetland Research Centre.
    Tonderski, Karin S.
    IFM Ecology, Linköping University, Linköping, Sweden.
    Clay-bound phosphorus retention in wetlands: a catchment comparison2010In: 6th International Phosphorus Workshop (IPW6): Towards a sustainable control of diffuse P loss: risk, monitoring, modelling, and mitigation options : Book of Abstracts, 2010, p. 127-127Conference paper (Other academic)
    Abstract [en]

    Ten constructed wetlands, situated in agricultural areas in the south of Sweden, are investigated for phosphorus (P) retention and factors affecting the efficiency. These wetlands are situated in areas dominated by clay or heavy clay soils. National monitoring and estimations have shown that agricultural areas dominated by such clay soils have among the highest phosphorus losses. It has also been shown that a large proportion of P is transported in particulate form; hence, it is expected that sedimentation is the predominant P retention process in the selected wetlands. Sedimentation of clay may, however, be difficult to achieve in wetlands, and the aim of the study is to quantify the function of wetlands as sinks for the P lost from the catchments. Sedimentation and accumulation of particles are measured once a year using sedimentation plates (40×40 cm) placed on the bottom of the wetlands. Additional sedimentation traps (estimating gross sedimentation) have been placed in three of the wetlands, and those are emptied two times per year. This paper presents results for P and soil retention after the first year (in kg P ha-1 year-1), estimated by extrapolating the amount of sediment accumulated on the plates, and the content of total phosphorus (TP), to the whole wetland area. Furthermore, one wetland was selected for a detailed investigation of the effect of a vegetation filter, which in a previous study has been shown to have a positive effect on particle retention. Here, estimates of net and gross sedimentation are measured before, within and after the vegetation filter. To identify some factors of significant importance for wetland P load and retention efficiency, the statistical relationship with different wetland and catchment characteristics is analyzed. The factors included are the ratio wetland area to catchment area, average hydraulic load, and various catchment characteristics, e.g. soil type, topography, fertilization history, and soil P fractions. Since there is some uncertainty regarding sedimentation of fine clay particles (< 0.2 m), the size fractions of the accumulated sediment is determined to see whether or not the finest clay particles from the catchments settle in the wetlands. Previous studies have shown a correlation between particle size and bioavailability, where finer clay particles contain larger proportion of easily available P. Trapping the finest clay particles is therefore of particular ecological importance and needs to be further investigated.

  • 2.
    Johannesson, Karin M.
    et al.
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Kynkäänniemi, Pia
    Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Ulén, Barbro
    Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Weisner, Stefan
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Environmental Science, Wetland Research Centre.
    Tonderski, Karin S.
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Phosphorus and particle retention in constructed wetlands—A catchment comparison2015In: Ecological Engineering: The Journal of Ecotechnology, ISSN 0925-8574, E-ISSN 1872-6992, Vol. 80, p. 20-31Article in journal (Refereed)
    Abstract [en]

    Abstract Seven constructed wetlands (0.05–0.69 ha), situated in agricultural catchments (22–267 ha) in the south of Sweden, were studied for two years with two aims: to (i) quantify their function as sinks for particles and phosphorus (P) lost from the catchments, and (ii) investigate to what degree catchment and wetland characteristics and modeled loads (using hydrochemical catchment models) could be used to explain differences in retention between the wetlands. The wetland areas ranged from 0.04 to 0.8% of the respective catchment area, and they were situated in areas dominated by fine-textured soils with relatively high P losses and the main proportion of P transported in particulate form. Net P and particle retention were estimated during two years from annual accumulation of particles on sedimentation plates (40 × 40 cm) on the bottom of the wetlands.

    There was an annual net retention of particles and P, but with a large variation (for particles 13–108 t ha−1 yr−1 and for P 11–175 kg ha−1 yr−1), both between wetlands and between years. The difference between the two years was larger than the difference in mean P retention between the seven wetlands. There was a positive relationship between P and particle retention and three catchment factors, i.e. P status (P-AL) of agricultural soils, average slope in the catchments and the livestock density, and a negative relationship with the agricultural soil clay content. In addition, there was a positive relationship with the wetland length:width ratio. Contrary to expectations, neither the modeled hydraulic load nor P load was significantly correlated with the measured particle and P retention. There was also a positive relationship between P concentration in the sediment and soil P status in the catchment. The results imply that considerable errors are introduced when down-scaling modeled regional nutrient losses to estimate the P loads to small wetlands in agriculturally dominated catchments. A more qualitative approach, using catchment characteristics for identification of hot-spot fields, may be equally good to identify suitable locations for constructed wetlands to reduce diffuse P loads. © 2014 Elsevier B.V.

  • 3.
    Johannesson, Karin
    et al.
    Institutionen för fysik, kemi och biologi, Ekologi, Linköpings universitet, Linköping, Sverige.
    Tonderski, Karin
    Institutionen för fysik, kemi och biologi, Ekologi, Linköpings universitet, Linköping, Sverige.
    Wedding, Bengt
    Ekologgruppen i Landskrona AB, Landskrona, Sverige.
    Ehde, Per Magnus
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Environmental Science, Wetland Research Centre.
    Weisner, Stefan
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Environmental Science, Wetland Research Centre.
    Phosphorus load variations and retention in non-point source wetlands in southern Sweden2011Manuscript (preprint) (Other academic)
    Abstract [en]

    Data from seven constructed wetlands receiving runoff from agricultural catchments in the south of Sweden were investigated with respect to phosphorus (P) retention. The seven wetlands differed in size (0.22-2 ha), design, land use and catchment characteristics. The hydraulic load varied between 7 and 725 m yr-1, which reflect the different geographical and hydrological conditions. The overall aim of this study was to increase the understanding of how water flow and inflow P concentration varations affect the P retention in constructed wetlands receiving runoff from arable land. Water flow was measured continuously, and time or flow proportional water samples were taken. Grab samples were taken during high flow periods and also to supplement the automatic water sampling. P retention varied between wetlands, from 1 to 58 kg ha-1 yr-1, and was correlated to the P load (R2=0.9, p<0.05). P retention in the wetlands varied strongly between years, and negative retention was recorded for some years and wetlands. When investigating monthly retention for each wetland, release of P corresponded to either high flow or possible anoxic conditions during low-flow periods in summer or during winter when ice covered the wetlands. Analyses of grab samples revealed a relationship between TP concentration and water flow for most wetlands. In some wetlands, P was transported mainly as particulate P (PP), but in other wetlands, soluble P was the dominating form in both inflow and outflow. Incoming concentrations varied greatly between wetlands (1-2000 μg l-1) which reflected the different catchment characteristics, e.g. land use, soil type and topography.

  • 4.
    Weisner, Stefan
    et al.
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Johannesson, Karin
    IFM Biology, Linköping University, Linköping, Sweden.
    Thiere, Geraldine
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Svengren, Henrik
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Ehde, Per Magnus
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Tonderski, Karin S.
    IFM Biology, Linköping University, Linköping, Sweden.
    National Large-Scale Wetland Creation in Agricultural Areas—Potential versus Realized Effects on Nutrient Transports2016In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 8, no 11, article id 544Article in journal (Refereed)
    Abstract [en]

    During 2007–2013, the Swedish Board of Agriculture granted support within a national program to about 1000 wetlands, corresponding to a 5300-hectare wetland area, with the dual goal to remove nutrients from water and to improve biodiversity in agricultural landscapes. The aim of the present study was to compare the effects on nutrient transports that are realized within the national program to what could be obtained with the same area of wetlands if location and design of wetlands were optimized. In single, highly nutrient-loaded wetlands, a removal of around 1000 kg nitrogen and 100 kg phosphorus per hectare wetland area and year was estimated from monitoring data. Statistical models were developed to estimate the overall nutrient removal effects of wetlands created within the national program. Depending on model, the effect of the national program as a whole was estimated to between 27 and 38 kg nitrogen and between 2.7 and 4.5 kg phosphorus per hectare created wetland area and year. Comparison of what is achieved in individual wetlands to what was achieved in the national program indicates that nutrient removal effects could be increased substantially in future wetland programs by emphasising location and design of wetlands.

  • 5.
    Weisner, Stefan
    et al.
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Environmental Science, Wetland Research Centre.
    Johannesson, Karin
    Linköpings universitet, Linköping, Sverige.
    Tonderski, Karin
    Linköpings universitet, Linköping, Sverige.
    Näringsavskiljning i anlagda våtmarker i jordbruket: Analys av mätresultat och effekter av landsbygdsprogrammet2015Report (Other academic)
    Abstract [en]

    Measurements of removal of phosphorus and nitrogen in created wetlands in agricultural areas in Sweden have been compiled and analysed. The results indicate the level of phosphorus and nitrogen removal that can be achieved in created wetlands in agricultural areas in Sweden. The results have also been used to develop new models for calculating removal of phosphorus and nitrogen in created wetlands in which measurements have not been done. Finally, these models have been used to estimate the removal effects that can be expected in the wetlands that have received financial support within the Swedish Rural Develop­ ment Programme in 2007–2013, and how much the transport of phosphorus and nitrogen to the sea will decrease due to the creation of these wetlands.

    The new results show that phosphorus removal has been underestimated in earlier measurements as well as in models used in previous evaluations. In individual well designed and located wetlands, a removal of 100 kilo phosphorus and 1 000 kilo nitrogen per hectare wetland area and year can be obtained. The new results also indicate that it should be possible to achieve a removal of 50 kilo phosphorus and 500 kilo nitrogen per hectare wetland area and year in wetland creation programs prioritizing wetlands that are located and designed primarily for nutrient removal. The costs are estimated to 100 SEK per kilo phosphorus and 10 SEK per kilo nitrogen, if 50 percent of the costs are allocated to biodiversity and other ecosystem services.

    Model calculations based on a selection of representative wetlands within the Rural Development Programme were scaled up to the 5 261 hectare wetland area that have been granted financial support during 2007–2013. The evaluation show that the Rural Development Programme will result in a reduced transport to local waters­ heds of about 25 tons of phosphorus and 200 tons of nitrogen per year. Therefore, the transport to the sea will decrease with about 18 tons of phosphorus per year and about 170 tons of nitrogen per year, corresponding to 1.9 and 0.5 percent, respectively, of the transport to the sea from agricultural land.

    Creation of wetlands within the Rural Development Programme has thus resulted in significant decreases of transports of phosphorus and nitrogen to inland waters and the coastal sea. However, a comparison of removal per hectare wetland area and year between what has been achieved within the Rural Development Programme and in individual wetlands suggests that the effect could be substantially increased with a better location and design of wetlands.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf