We present new high angular resolution images of the compact non-thermal radio source 4C 39.25 obtained from VLBI observations at λ1.3cm, λ7mm, and λ3mm wavelengths. These maps and Gaussian model-fits show that the milli-arcsecond to sub-milliarcsecond structure of 4C 39.25 consists of a complex bent core-jet structure with embedded moving and stationary VLBI components. Facilitated by the small observing beams and high angular resolutions obtained at mm-wavelengths, we measured the relative positions of the jet components with an accuracy of a few hundred micro-arcseconds. This allows the detailed followup of the ongoing merging process of a westward superluminally moving component (b_) with a stationary component a_, located at ~2.9 mas east of the putative core d_. In contrast to the other components of the structure with steeper spectra, the westernmost component d_ exhibits an inverted spectrum peaking between λ7mm and λ3mm, thus further supporting its identification as the VLBI core, self-absorbed at longer wavelengths. From two VLBI maps obtained nearly simultaneously at λ7mm and λ1.3cm, we made the first spectral index map of 4C 39.25 in this wavelength regime. The main characteristics of the spectral index distribution of the jet are pronounced changes of the spectral index between orientations parallel and transverse to the jet axis. Near the merging components a_ and b_ the spectral index steepens with increasing separation from d_. However, in the bridge of emission c_, which connects d_ with a_ and b_, the spectral index gradient has a direction transverse to the jet axis, suggesting a frequency dependent jet curvature and edge-brightening. A brief discussion of this behaviour within current jet models is presented.
Second-epoch VLBI observations of the flat-spectrum radio source 2021+614 made simultaneously at 2.3 and 8.3 GHz with the Mark III system are reported. The maps derived from these observations reveal a complex, frequency-dependent radio structure on the milliarcsecond scale. The object has four nearly collinear components oriented at a position angle of about 35 degrees and embedded in an extended region. Two of these are optically thin, one has a flat spectrum, and the other appears to be synchrotron self-absorbed in the frequency range 2.3-8.3 GHz. No significant structural variation is found at either frequency between epochs separated by about three years. The formal estimate of the transverse velocity between two components, one with a flat and the other with an inverted spectrum, is v/c = 0.7 + or - 2.3. Remarkable similarities between 2021+614 and the unusual source 0316+413 are discussed.
VLBI observations of 20 compact quasars have been made between Jodrell Bank and Onsala at a frequency of 1666 MHz. Twelve of the quasars have inverted or peaked spectra at centimetre wavelengths and these are all unresolved, having angular diameters of less than 0.015 arcsec. Two out of five quasars with overall flat spectra are partially resolved on this scale size, as are three steep-spectrum quasars.
Four strong radio sources were observed over a 12-hr session in March, 1990 between radio telescopes at Onsala and Torun at wavelength of 6 cm in the standard VLBI Mark II setup for the purpose of improving the coordinates of the Torun 15-meter antenna. The Cartesian coordinates of the antenna derived from the presented measurements are (in meters): 3638609.62 +/- 0.19, 1221773.23 +/- 0.54 and 5077024.50 +/- 1.66 in the x, y, and z directions, respectively.
A method for measuring the position of at least one surface in a metallurgical process which includes the steps of providing a metallurgical melt, the metallurgical melt including at least a metal portion and a slag layer, providing a signal generator for generating signals at a plurality of frequencies over a frequency band, and providing an antenna for receiving the signals generated by the signal generator and for transmitting circularly polarized radio waves at the plurality of frequencies over the frequency band. The invention further includes the steps of disposing the antenna adjacent the metallurgical melt, transmitting the circularly polarized radio waves from the antenna toward the metallurgical melt, the circularly polarized radio waves being transmitted by the antenna at the plurality of frequencies over the frequency band, receiving reflected images of the transmitted radio waves through the antenna, the received reflected images of the transmitted radio waves having a substantially opposite circular polarization from the transmitted circularly polarized radio waves, determining a phase displacement between the transmitted radio waves and the received reflected images of the transmitted radio waves, transforming the determined phase displacement from a frequency to a time plane, and determining from the time plane transform a position of at least one surface of at least one of the metal portion and the slag layer.
A measuring technique and method are provided to simultaneously determine the molecular density of several molecular species and the temperature within a closed process room in a melting or combustion process. In such processes in the industry, e.g. in metallurgic process industry, it is important to determine the temperature and the contents within the gas or flame without physically connect to or disturb the process. This has shown to raise large problems especially at high temperatures. The radio signal over a frequency band is measured on the outside of the process room through a window in the mantel covering as a function of frequency and registered on a computer as a radio spectrum. The system is calibrated by using a known signal transmitted through the process room. The spectral lines are identified by their frequency from a database. The temperature is determined from several lines of the same molecular specie and the molecular densities are determined from the intensities of the lines. The method is suitable to determine vibrational and rotational excitation of molecular species in the radio wavelength range of 30 micrometers to 500 meters. The densities of molecular species and the temperature can be imaged in three dimensions inside the process room or exhaust channel if interferometers are used for simultaneous two dimensional imaging from several azimuth directions.
Method and apparatus for analysing a substance in a container, the method comprising the steps of: disposing antenna means (3) at a predetermined geometrical distance (L) from a container portion (13); transmitting a signal from said antenna means through a surface portion (12) of the substance towards said container portion; receiving a first reflected signal in said antenna means from said container portion; determining a geometrical distance (L 1 ) from the surface portion to the container portion; varying the frequency of the transmitted signal to determine a first phase displacement between the transmitted signal and the first reflected signal; determining an optical distance from the surface portion to the container portion based on the first phase displacement; and determining the index of refraction (n 1 ) of said substance based on the optical and geometrical from the surface portion to the container portion.
A measuring technique and method are provided to simultaneously determine the molecular density of several molecular species and the temperature within a closed process room in a melting or combustion process. In such processes in the industry, e.g. in metallurgic process industry, it is important to determine the temperature and the contents within the gas or flame without physically connect to or disturb the process. This has shown to raise large problems especially at high temperatures. The radio signal over a frequency band is measured on the outside of the process room through a window in the mantel covering as a function of frequency and registered on a computer as a radio spectrum. The system is calibrated by using a known signal transmitted through the process room. The spectral lines are identified by their frequency from a database. The temperature is determined from several lines of the same molecular specie and the molecular densities are determined from the intensities of the lines. The method is suitable to determine vibrational and rotational excitation of molecular species in the radio wavelength range of 30.mu.m to 500 m. The densities of molecular species and the temperature can be imaged in three dimensions inside the process room or exhaust channel if interferometers are used for simultaneous two dimensional imaging from several azimuth directions.
A measuring technique and method are provided to simultaneously determine the molecular density of several molecular species and the temperature within a closed process room in a melting or combustion process. In such processes in the industry, e.g. in metallurgic process industry, it is important to determine the temperature and the contents within the gas or flame without physically connect to or disturb the process. This has shown to raise large problems especially at high temperatures. The radio signal over a frequency band is measured on the outside of the process room through a window in the mantel covering as a function of frequency and registered on a computer as a radio spectrum. The system is calibrated by using a known signal transmitted through the process room. The spectral lines are identified by their frequency from a database. The temperature is determined from several lines of the same molecular specie and the molecular densities are determined from the intensities of the lines. The method is suitable to determine vibrational and rotational excitation of molecular species in the radio wavelength range of 500 m et 30 m. The densities of molecular species and the temperature can be imaged in three dimensions inside the process room or exhaust channel if interferometers are used for simultaneous two dimensional imaging from several azimuth directions.
This paper presents observations of audio noise in frequency range 20e20 000 Hz from wind turbines. The observations were performed around the theoretically calculated 40 dBA noise perimeter around the wind turbine farm at Oxhult, Sweden. This paper describes a newly designed and constructed a field qualified data acquisition system to measure spectra and total noise level of sound from wind turbines. The system has been calibrated at SP Borås. It is shown that it has a flat frequency response and is linear with amplitude and time.
The total noise level (as integrated 20e20 000 Hz) is shown to be below 35 dBA (below the reference background noise at 36 dBA) at a 10 m altitude wind speed of 4e5 m/s. The measurements were made along the theoretical 40 dBA border at 8 m/s.
It is concluded that the theoretical 40 dBA border seems reasonable calculated if the manufacturer specifications are used to extrapolate the sound level to correspond to 8 m/s at 10 m. Our data indicate that a simple sound propagation model is sufficient since the sound level is more affected by the nearby environment than the large scale forest structure. Also, the large scale forestry structure is bound to change with time and the error bars of measurements on total sound level are about 1 dBA, which is larger than any fine tuning with a more sophisticated model. More care should be taken to model the reflections from walls and other obstacles close to the microphones.
The distribution of the spectral noise level around the turbine farm suggests that the noise originates from individual wind turbines closest to the measurement location rather than from the wind turbine farm as a whole. The spectra show narrow band spectral line features which do not contribute signifi-cantly to the total noise at this level. The narrow band features are only detectable at very long inte-gration time and at 1 Hz spectral resolution. The spectral features are typical to originate from mechanical noise.
The spectral acquisition method described in this paper can be used as a field qualified system for sound measurements in forest areas. The high spectral resolution is a viable remote diagnostic method for mechanical faults in the turbine machinery. Future work will concentrate on these two areas.
This paper discusses imaging with complex data from micro-wave, mm-wave, and optical interferometers. An overview of methods to extract physical parameters as images from interferometer data is made and two- and three-dimensional images of gas flows, quasi-stellar objects, steel melts, and fiber material such as wood are presented.
Inom projektet har hittills genomförts följande aktiviteter:
Method and apparatus for determining the thickness of material layers of a container-held substance comprising a first material disposed in an upper layer and a second material disposed in a lower layer, by transmitting a radio signal through the substance towards a container portion; receiving reflected signals from a surface of the upper layer, a surface of the second layer, and the container portion; varying the frequency of the transmitted signal to determine phase displacement between transmitted and reflected signals; determining optical distances to the surfaces and the container portion, dependent on the phase displacements; determining the thickness of one of said layers dependent on phase displacement through and index of refraction of that layer; and determining the thickness of the other layer dependent on the thickness of said one of said layers.
Method and apparatus for analyzing a substance in a container, the method comprising the steps of: disposing antenna means (3) at a predetermined geometrical distance (L) from a container portion (13); transmitting a signal from said antenna means through a surface portion (12) of the substance towards said container portion; receiving a first reflected signal in said antenna means from said container portion; determining a geometrical distance (L1) from the surface portion to the container portion; varying the frequency of the transmitted signal to determine a first phase displacement between the transmitted signal and the first reflected signal; determining an optical distance from the surface portion to the container portion based on the first phase displacement; and determining the index of refraction (nt) of said substance based on the optical and geometrical from the surface portion to the container portion.
Very long Baseline Interferometry (VLBI) has now made its break-through into the mm wavelength regime. A global VLBI array has produced maps of radio sources at 3 mm since 1988 and development is under way to improve the sensitivity for VLBI also at 1 mm. This contribution discusses the present state of mm VLBI and the future developments.
During the past decade software to control metallurgical processes has improved to require new physical sensors for feedback. We present a non-invasive interferometric technique to simultaneously measure multiple levels in dynamic metallurgical processes, e.g. the foam-, slag-, emulsion-, and steel-layers in furnaces. The measurements are continuous and on-line during production.
This paper presents topographic measurements of metal surface with Point Diffraction Interferometer (PDI) technique. Interferogram of a surface is created and recorded with different phase offsets. These are then combined to create a phase offset map of the surface. We demonstrate the use with the presentation of our first surface topographic map
A scanning device based on changes in the reflections of an electromagnetic wave for use on wood the image can be calculated.
Denna rapport presenterar resultatet av en förstudie om tekniker för avisning av vindkraftverk. Rapporten presenterar och diskuterar möjliga metoder och tekniker för att antingen värma vattendroppar till över fryspunkten, eller smälta is som har bildats på vingen. Problematiken för vingar på vindkraftverk skiljer sig markant från nedisning av flygplansvingar i att: (1) vingar på vindkraftverk tillbringar all sin tid i den delen av atmosfären där risken för nedisning är som störst; och (2) hastigheten för vingen mot luft varierar med avstånd från rotationscentrum medan den är konstant över vingen på ett flygplan. Formen på vingen på ett vindkraftverk varierar också från toppen in till centrum för att kompensera för variationen av relativ hastighet mot luften.Rapporten koncentreras på isbildning inom temperaturintervallet -10°C – 0°C och droppstorlekar av 1- 10 μm. Nedisning sker även vid mycket lägre temperaturer, men då sker troligen isbildningen direkt från vattenånga.
Vi drar följande slutsatser från vår studie:
Vår förstudie visar dessutom:
Vår förstudie visar att problematiken med undvikande av isbildning på, eller avisning av, vindkraftsverk inte har sitt svar i en enda teknik. Formen på vingen och strukturen på dess yta kan spela en viktig roll i förhållandena för isbildning. Båda dessa variabler kan behöva varieras beroende på latitud och atmosfäriskt klimat. Ytstrukturen måste troligen också variera över vingytan, både längs med vingen och tvärs, för att optimera för de lokala förhållandena. Dessutom kan smältning av is medelst värmning av vingytan vara en viktig extra möjlighet för att undvika effektförluster.Mer forskning är nödvändig, men vi sammanfattar att det största intresset just nu är att studera flödet av droppar över vingen som funktion av tvärsnittsytans form och kontakten mellan vingytan som funktion av ytstrukturen (t.ex. Lotus effekten).Denna rapport är resultatet av ett förstudieprojekt. Vi ämnar nu fortsätta med ett djupare forskningsprojekt som koncentreras på formen och ytstrukturen enligt vad som framkommit av vår analys och våra datorsimuleringar.
We present VLA A-array observations at 8.4 and 15GHz and European VLBI Network (EVN) observations at 1.6GHz of the radio source 1422+202. It is suggested that 1422+202 is a Medium-size Object in the evolutionary sequence from Compact Steep-spectrum Sources to larger sized radio sources. The VLBI data were analysed with the phase referencing technique and we show that the EVN can work as a phase stable instrument for separations between the calibrator source and the target source up to ~ 10 degrees. With the VLA and VLBI observations we investigate some of the issues about the nucleus of 1422+202 and we discuss the possible cause for the low frequency variability detected while monitoring the source.
PROBLEM TO BE SOLVED: To provide a method and system using transmission of an electromagnetic signal in order to determine the positions of reflection points by detecting the signals reflected at the reflection points in space. ; SOLUTION: The present invention provides a method, antenna, and system for defining the positions of the reflection points using microwave. The electromagnetic signal is generated at a determined frequency, and is transmitted by an antenna unit. The antenna unit comprises a transmitting antenna, and many receiving antennas that are separated at a known interval in the direction perpendicular to the main visual axis and are designed to receive a part of the reflected wave of the transmitted wave. A phase comparing means is connected to the transmitting antenna and receiving antennas, and a control unit connected to the phase comparing means can calculate an angle to the reflection points and calculate the distances to the reflection points. ; COPYRIGHT: (C)2007,JPO&INPIT
A method, an antenna, and a system for determining positions for reflection points using microwaves. An electromagnetic wave signal is generated at a defined frequency, and transmitted by an antenna unit the antenna unit includes a transmitter antenna and a plurality of receiver antennas, separated by a known spacing perpendicular to a main line of sight and devised to receive reflected portions of the transmitted wave. Phase comparator means are connected to the transmitter antenna and the receiver antennas, and a control unit connected to the phase comparator means is operable to calculate an angle to a reflection point from detected phase difference between at least two receiver antennas and the spacing between said at least two receiver antennas, and to calculate a distance to the reflection point from detected phase difference between the transmitter antenna and a receiver antenna dependent on the frequency.
There is an increasing requirement from manufacturing industries for improved technologies to measure surface topography. New instruments have to be accurate; robust to be used on the industry floor; non-invasive; automatic; and sufficiently fast to be used in real time as well as to simultaneously measure over a large area. The industrial applications are plenty:
This paper presents new developments in interferometer techniques for new robust area-based topographic instruments.
The intensive radio emission from powerful radio galaxies and quasars Make these attractive candidates to become "standard candles" to probe the Universe. This paper discusses this possibility and the physics of the radio sources.
This contribution discusses the connection between variability in radio and optical with structural variations observed with VLBI. Structural changes do not have to start in the core, and intensity variations may be caused by components in the jet outside the core. The scenario is probably more complicated than present day theories assume.
Earlier epoches of mm VLBI observations relied on single baseline fit of delays and rates to find the fringes. This approach does not, however, make use of all available information and therefore is less sensitive than is necessary. Global fringe fitting makes use of all simultaneous data to find station related clock offsets and rates over a certain period of time. © Universal Academy Press, Inc.
A system has been developed where data from a Mk3 VLBI processor can be read into the AIPS-package. Multiband and single-band delays can then be fitted globally by station. The technique has been used to phasereference a background to two radiogalaxies in the Abell cluster A2634.
Fifteen sources known to be varying at low frequencies have been observed at six epochs during 1983–84 with a global VLBI array. Some of the sources show structural variations similar to the superluminals. Beaming effect may therefore play an important role at low as well as at higher frequencies.
The purpose of this lecture is to introduce the VLBI user to the practical details of mapping radio sources. I will concentrate on data processing and mapping with the AIPS (Thompson and D’Addario, 1982)-package. Other data reduction systems do exist, e.g. the Caltech-package and OLAF. These differ from AIPS mostly in the strategy for reaching the final and “best” map. It is more important to know the method and to be careful than what reduction procedure is used.
The development of new reveiver and data reduction techniques have now made VLBI at mm wavelengths possible. This contribution discusses the capability of the present and future VLBI networks at λ1 and 3mm and compares with radio interferometers at other wavelength regimes.
VSOP-to-ground VLBI and mm VLBI are both needed if we want to further increase our knowledge of quasars, radio galaxies and their radio jets, mm VLBI will be a better instrument to study the "central engine" while satellite VLBI will better show the structure of the jets. The two instruments complement each other, and it is important to have a close collaboration. © Universal Academy Press, Inc.