hh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gonzalez-Sosa, Ester
    et al.
    Universidad Autonoma de Madrid, Madrid, Spain.
    Vera-Rodriguez, Ruben
    Universidad Autonoma de Madrid, Madrid, Spain.
    Fierrez, Julian
    Universidad Autonoma de Madrid, Madrid, Spain.
    Alonso-Fernandez, Fernando
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
    Patel, Vishal M.
    Rutgers University, NJ, USA.
    Exploring Body Texture From mmW Images for Person Recognition2019In: IEEE Transactions on Biometrics, Behavior, and Identity Science, E-ISSN 2637-6407, Vol. 1, no 2, p. 139-151Article in journal (Refereed)
    Abstract [en]

    Imaging using millimeter waves (mmWs) has many advantages including the ability to penetrate obscurants, such as clothes and polymers. After having explored shape information retrieved from mmW images for person recognition, in this paper we aim to gain some insight about the potential of using mmW texture information for the same task, considering not only the mmW face, but also mmW torso and mmW wholebody. We report experimental results using the mmW TNO database consisting of 50 individuals based on both hand-crafted and learned features from Alexnet and VGG-face pretrained convolutional neural networks (CNNs) models. First, we analyze the individual performance of three mmW body parts, concluding that: 1) mmW torso region is more discriminative than mmW face and the whole body; 2) CNN features produce better results compared to hand-crafted features on mmW faces and the entire body; and 3) hand-crafted features slightly outperform CNN features on mmW torso. In the second part of this paper, we analyze different multi-algorithmic and multi-modal techniques, including a novel CNN-based fusion technique, improving verification results to 2% EER and identification rank-1 results up to 99%. Comparative analyses with mmW body shape information and face recognition in the visible and NIR spectral bands are also reported.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf