hh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gelzinis, Adas
    et al.
    Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
    Verikas, Antanas
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Intelligent Systems´ laboratory. Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
    Vaiciukynas, Evaldas
    Department of Electrical Power Systems & Department of Information Systems, Kaunas University of Technology, Kaunas, Lithuania.
    Bacauskiene, Marija
    Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
    A novel technique to extract accurate cell contours applied to analysis of phytoplankton images2015In: Machine Vision and Applications, ISSN 0932-8092, E-ISSN 1432-1769, Vol. 26, no 2-3, p. 305-315Article in journal (Refereed)
    Abstract [en]

    Active contour model (ACM) is an image segmentation technique widely applied for object detection. Most of the research in ACM area is dedicated to the development of various energy functions based on physical intuition. Here, instead of constructing a new energy function, we manipulate values of ACM parameters to generate a multitude of potential contours, score them using a machine-learned ranking technique, and select the best contour for each object in question. Several learning-to-rank (L2R) methods are evaluated with a goal to choose the most accurate in assessing the quality of generated contours. Superiority of the proposed segmentation approach over the original boosted edge-based ACM and three ACM implementations using the level-set framework is demonstrated for the task of Prorocentrum minimum cells’ detection in phytoplankton images. Experiments show that diverse set of contour features with grading learned by a variant of multiple additive regression trees (λ-MART) helped to extract precise contour for 87.6 % of cells tested.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf