hh.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Johnn
    et al.
    Chalmers University of Technology, Division of Environmental Systems Analysis Department of Energy and Environment, Gothenburg, Sweden.
    Perez Vico, Eugenia
    Halmstad University, School of Business, Engineering and Science, Centre for Innovation, Entrepreneurship and Learning Research (CIEL). Lund University, Lund, Sweden.
    Hammar, Linus
    Chalmers University of Technology, Gothenburg, Sweden.
    The critical role of informed political direction for advancing technology: The case of Swedish marine energy2017In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 101, p. 52-64Article in journal (Refereed)
    Abstract [en]

    Marine energy technologies can contribute to meeting sustainability challenges, but they are still immature and dependent on public support. This paper employs the Technological Innovation Systems (TIS) framework to analyze the development and diffusion of Swedish marine energy up until 2014. While there were promising device developers, relevant industrial capabilities, and world-class research, the system suffered from weaknesses in several important innovation processes. Finally, the analysis identifies the lack of informed political direction as a critical blocking factor and highlights its connection to domestic market potential. © 2016 Elsevier Ltd

  • 2.
    Connolly, David
    et al.
    Aalborg University, Aalborg, Denmark.
    Lund, Henrik
    Aalborg University, Aalborg, Denmark.
    Mathiesen, Brian Vad
    Aalborg University, Aalborg, Denmark.
    Werner, Sven
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Energiteknik.
    Möller, Bernd
    Aalborg University, Aalborg, Denmark.
    Persson, Urban
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Energiteknik.
    Boermans, Thomas
    Ecofys, Köln, Germany.
    Trier, Daniel
    PlanEnergi, Copenhagen, Denmark.
    Østergaard, Poul Alberg
    Aalborg University, Aalborg, Denmark.
    Nielsen, Steffen
    Aalborg University, Aalborg, Denmark.
    Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system2014In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 65, p. 475-489Article in journal (Refereed)
    Abstract [en]

    Six different strategies have recently been proposed for the European Union (EU) energy system in the European Commission’s report, Energy Roadmap 2050. The objective for these strategies is to identify how the EU can reach its target of an 80% reduction in annual greenhouse gas emissions in 2050 compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential for district heating in the EU between now and 2050 is identified, based on extensive and detailed mapping of the EU heat demand and various supply options. Subsequently, a new ‘district heating plus heat savings’ scenario is technically and economically assessed from an energy systems perspective. The results indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating, these goals can be achieved at a lower cost, with heating and cooling costs reduced by approximately 15%. © 2013 Elsevier Ltd.

  • 3.
    Egeskog, Andrea
    et al.
    Chalmers University of Technology, Göteborg, Sweden.
    Hansson, Julia
    Chalmers University of Technology, Göteborg, Sweden.
    Berndes, Göran
    Chalmers University of Technology, Göteborg, Sweden.
    Werner, Sven
    Halmstad University, School of Business and Engineering (SET), Biological and Environmental Systems (BLESS), Energiteknik.
    Co-generation of biofuels for transportation and heat for district heating systems: An assessment of the national possibilities in the EU2009In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 37, no 12, p. 5260-5272Article in journal (Refereed)
    Abstract [en]

    Biomass gasification with subsequent synthesis to liquid or gaseous biofuels generates heat possible to use in district heating (DH) systems. The purpose here is to estimate the heat sink capacity of DH systems in the individual EU nations and assess the possibilities for biomass-gasification-based co-generation of synthetic biofuels for transportation and heat (CBH) for DH systems in the EU countries. The possibilities are assessed (i) assuming different levels of competiveness relative to other heat supply options of CBH corresponding to the EU target for renewable energy for transportation for 2020 and (ii) assuming that the potential expansion of the DH systems by 2020 is met with CBH. In general, the size of the DH heat sinks represented by the existing national aggregated DH systems can accommodate CBH at a scale that is significant compared to the 2020 renewable transportation target. The possibilities for CBH also depend on its cost-competitiveness compared to, e.g., fossil-fuel-based CHP. The possible expansion of the DH systems by 2020 represents an important opportunity for CBH and is also influenced by the potential increase in the use of other heat supply options, such as, industrial waste heat, waste incineration, and CHP. © 2009 Elsevier Ltd. All rights reserved.

  • 4.
    Leurent, Martin
    et al.
    Université Paris-Saclay, Gif-sur-Yvette, France.
    Da Costa, Pascal
    Université Paris-Saclay, Gif-sur-Yvette, France.
    Jasserand, Frédéric
    Université Paris-Saclay, Gif-sur-Yvette, France.
    Rämä, Miika
    VTT Technical Research Centre of Finland, VTT, Espoo, Finland.
    Persson, Urban
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Cost and climate savings through nuclear district heating in a French urban area2018In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 115, p. 616-630Article in journal (Refereed)
    Abstract [en]

    This paper compares the socioeconomic potential of heating systems that could be developed in the Lyon urban area (France). The district heating (DH) systems investigated in this paper use low-carbon heat sources: large-scale heat pumps (LSHP) or nuclear combined heat and power plants (NCHP). They are compared with electric boilers and central gas boilers in terms of greenhouse gas emissions and heating costs. The heating systems are dimensioned to supply the projected 2030 heat loads for two different land surface areas (extensive and compact). The key input data is the empirical residential and tertiary heat demand per square kilometre for 2015, extrapolated to 2030 to account for the potential decrease in the heat demand (energy-efficient buildings). Given the assumptions made in this paper, the heating system that obtains the best balance between CO2 emissions and heating cost relies on an NCHP located about 30 km from Lyon. Cases in which the heat has to be transported over longer distances are considered, hence providing insights for metropolitan areas with similar size and density as the Lyon area. Implications for stakeholders and policy makers are discussed, so that to optimize future French energy systems through the most efficient use of available technologies. © 2018 Elsevier Ltd. All rights reserved.

  • 5.
    Pedersen, Eja
    et al.
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS).
    Johansson, Maria
    Environmental Psychology, Department of Architecture and Built Environment, Lund University, Sweden.
    Wind power or uranium mine: Appraisal of two energy-related environmental changes in a local context2012In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 44, p. 312-319Article in journal (Refereed)
    Abstract [en]

    This study explores factors associated with the individual’s appraisal of anticipated environmental changes caused by energy production facilities. The study took place in a Swedish village where exploratory drilling, that could eventually lead to a uranium mine, was being conducted at the same time as a wind farm was approved. Results from the survey, which included the total population, were interpreted in the light of cognitive stress theory. Most residents thought that the wind farm would have a positive impact on the village but that the uranium drilling would have a negative impact; these opinions were closely related to attitudes towards wind and nuclear power. Perceiving the wind farm as positive was further predicted by young age, high education, being an ordinary rather than a committed recycler and having attended a meeting about the wind farm. A negative view of uranium drilling was predicted by the individual valuing closeness to nature, being a recycler, and having attended the uranium meeting. Psychological factors such as concerns for the environment (manifested as pro-environmental behaviour), valuing closeness to nature, and involvement impinge on the appraisal process and should be considered when new developments are presented. © 2012 Elsevier Ltd.

  • 6.
    Pedersen, Eja
    et al.
    Halmstad University, School of Business and Engineering (SET), Biological and Environmental Systems (BLESS).
    van den Berg, Frits
    GGD Amsterdam, Amsterdam, The Netherlands.
    Bakker, Roel
    University Medical Centre Groningen, University of Groningen, Netherlands.
    Bouma, Jelte
    University Medical Centre Groningen, University of Groningen, Netherlands.
    Can road traffic mask sound from wind turbines?: Response to wind turbine sound at different levels of road traffic sound2010In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 38, no 5, p. 2520-2527Article in journal (Refereed)
    Abstract [en]

    Wind turbines are favoured in the switch-over to renewable energy. Suitable sites for further developments could be difficult to find as the sound emitted from the rotor blades calls for a sufficient distance to residents to avoid negative effects. The aim of this study was to explore if road traffic sound could mask wind turbine sound or, in contrast, increases annoyance due to wind turbine noise. Annoyance of road traffic and wind turbine noise was measured in the WINDFARMperception survey in the Netherlands in 2007 (n = 725) and related to calculated levels of sound. The presence of road traffic sound did not in general decrease annoyance with wind turbine noise, except when levels of wind turbine sound were moderate (35-40 dB(A) Lden) and road traffic sound level exceeded that level with at least 20 dB(A). Annoyance with both noises was intercorrelated but this correlation was probably due to the influence of individual factors. Furthermore, visibility and attitude towards wind turbines were significantly related to noise annoyance of modern wind turbines. The results can be used for the selection of suitable sites, possibly favouring already noise exposed areas if wind turbine sound levels are sufficiently low. (C) 2010 Elsevier Ltd. All rights reserved.

  • 7.
    Persson, Urban
    et al.
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Energiteknik.
    Möller, Bernd
    Europa-Universität Flensburg, Flensburg, Germany.
    Werner, Sven
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Energiteknik.
    Heat Roadmap Europe: Identifying strategic heat synergy regions2014In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 74, p. 663-681Article in journal (Refereed)
    Abstract [en]

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. © 2014 Elsevier Ltd.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf