hh.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jam, Reza Jafari
    et al.
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Persson, Axel R.
    Lund Univ, Centr & Anal & Synth & NanoLund, POB 124, SE-21100 Lund, Sweden..
    Barrigon, Enrique
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Heurlin, Magnus
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Geijselaers, Irene
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Gomez, Victor J.
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Hultin, Olof
    RISE Res Inst Sweden, Scheelevagen 17, S-22370 Lund, Sweden..
    Samuelson, Lars
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Borgstrom, Magnus T.
    Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden..
    Pettersson, Håkan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Lund Univ, Div Solid State Phys & NanoLund, Box 118, SE-21100 Lund, Sweden.;Halmstad Univ, Sch Informat Technol, Box 823, S-30118 Halmstad, Sweden..
    Template-assisted vapour-liquid-solid growth of InP nanowires on (001) InP and Si substrates2020In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 12, no 2, p. 888-894Article in journal (Refereed)
    Abstract [en]

    We report on the synthesis of vertical InP nanowire arrays on (001) InP and Si substrates using template-assisted vapour-liquid-solid growth. A thick silicon oxide layer was first deposited on the substrates. The samples were then patterned by electron beam lithography and deep dry etching through the oxide layer down to the substrate surface. Gold seed particles were subsequently deposited in the holes of the pattern by the use of pulse electrodeposition. The subsequent growth of nanowires by the vapour-liquid-solid method was guided towards the [001] direction by the patterned oxide template, and displayed a high growth yield with respect to the array of holes in the template. In order to confirm the versatility and robustness of the process, we have also demonstrated guided growth of InP nanowire p-n junctions and InP/InAs/InP nanowire heterostructures on (001) InP substrates. Our results show a promising route to monolithically integrate III-V nanowire heterostructure devices with commercially viable (001) silicon platforms.

    Download full text (pdf)
    fulltext
  • 2.
    Mathews, Nripan
    et al.
    School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
    Varghese, Binni
    Department of Physics, National University of Singapore, Singapore, Singapore.
    Sun, Cheng
    School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
    Thavasi, Velmurugan
    NUS Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore, Singapore.
    Andreasson, Björn Pererik
    School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
    Sow, Chornghaur H.
    Department of Physics, National University of Singapore, Singapore, Singapore.
    Ramakrishna, Seeram
    Department of Physics, National University of Singapore, Singapore, Singapore & King Saud University, Riyadh, Saudi Arabia.
    Mhaisalkar, Subodh G.
    School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
    Oxide nanowire networks and their electronic and optoelectronic characteristics2010In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 2, no 10, p. 1984-1998Article in journal (Refereed)
    Abstract [en]

    Oxide nanowire networks or oxide nanonets leverage some of the exceptional functionalities of one-dimensional nanomaterials along with the fault tolerance and flexibility of interconnected nanowires to creating exciting opportunities in large-area electronics as well as green energy systems. This paper reviews the electronic and optoelectronic properties of these networks and highlights their potential applications in field-effect transistors, optoelectronic devices, and solar cells. Techniques to grow nanowires and their subsequent integration into networks using contact printing and electrospinning are described. Electrical properties of field-effect transistors fabricated from contact printed nanowire networks are discussed, and means of integration of the nanowire networks of heterogenous materials that enable ambipolar device operation are outlined. Photocurrent properties of these nanowires are described, including the dye sensitization of large-bandgap SnO2 nanowires. The final section deals with the advantages of employing nanowire networks in dye-sensitized solar cells and the dependence of solar cell performance on morphology and surface area. © The Royal Society of Chemistry 2010.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf