hh.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Levander, F.
    et al.
    Department of Protein Technology, Lund University, Lund, Sweden.
    Rögnvaldsson, Thorsteinn
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Samuelsson, J.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    James, P.
    Department of Protein Technology, Lund University, Lund, Sweden.
    Automated methods for improved protein identification by peptide mass fingerprinting2004In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 4, no 9, p. 2594-2601Article in journal (Refereed)
    Abstract [en]

    In order to maximize protein identification by peptide mass fingerprinting noise peaks must be removed from spectra and recalibration is often required. The preprocessing of the spectra before database searching is essential but is time-consuming. Nevertheless, the optimal database search parameters often vary over a batch of samples. For high-throughput protein identification, these factors should be set automatically, with no or little human intervention. In the present work automated batch filtering and recalibration using a statistical filter is described. The filter is combined with multiple data searches that are performed automatically. We show that, using several hundred protein digests, protein identification rates could be more than doubled, compared to standard database searching. Furthermore, automated large-scale in-gel digestion of proteins with endoproteinase LysC, and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis, followed by subsequent trypsin digestion and MALDI-TOF analysis were performed. Several proteins could be identified only after digestion with one of the enzymes, and some less significant protein identifications were confirmed after digestion with the other enzyme. The results indicate that identification of especially small and low-abundance proteins could be significantly improved after sequential digestions with two enzymes.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf