hh.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Averfalk, Helge
    et al.
    Halmstad University, School of Business, Innovation and Sustainability, The Rydberg Laboratory for Applied Sciences (RLAS).
    Möllerström, Erik
    Halmstad University, School of Business, Innovation and Sustainability, The Rydberg Laboratory for Applied Sciences (RLAS).
    Ottermo, Fredric
    Halmstad University, School of Business, Innovation and Sustainability, The Rydberg Laboratory for Applied Sciences (RLAS).
    Domestic hot water design and flow measurements2021In: Energy Reports, E-ISSN 2352-4847, Vol. 7, no Suppl. 4, p. 304-310Article in journal (Refereed)
    Abstract [en]

    In this study, the sizing of primary side components for preparation of domestic hot water are analysed, both qualitatively and based on measurements of domestic hot water demand in one multi-family building with 268 apartments. The collected data spans a period of 18 days during the end of 2020 and is collected in 15-min, 1-min, and 6-s intervals. An overview of the historic development for the design of domestic hot water flow in Sweden is also presented. There is a long-standing argument in Sweden, that the current district heating guidelines result in an overdesign of the flow for domestic hot water. The consequence of this is oversizing heat exchangers and valves in the substations. This study assesses, qualitatively, the issues related to overdesigned primary side valves for preparation of domestic hot water. A revised design for domestic hot water flow for the Swedish context is also conceptualised. The study suggests that an improved design flow for domestic hot water in multi-family buildings can be derived based on empirical measurements. The 15-min intervals are observed to tone down information of peaks to a degree where it is unsuitable to use as basis for a new design flow. The 1-min data does appear to preserve information to a degree where it can be used to assess a design flow when related to data with a 6-s interval. The 6-s data is expected to constitute a resolution that may be less available, and in this study, it constitutes a representation of the real domestic hot water demands. However, to find a fitted curve to empirical data, for the design flow based on number of apartments per multi-family building, the population of datasets needs to be increased. © 2021 The Authors. Published by Elsevier Ltd.

  • 2.
    Schmidt, Dietrich
    et al.
    Fraunhofer Iee, Kassel, Germany.
    Lygnerud, Kristina
    Halmstad University, School of Business, Innovation and Sustainability.
    Werner, Sven
    Halmstad University, School of Business, Innovation and Sustainability.
    Geyer, Roman
    Ait Austrian Institute Of Technology, Vienna, Austria.
    Schrammel, Harald
    Aee Intec, Gleisdorf, Austria.
    Østergaard, Dorte Skaarup
    Technical University Of Denmark, Lyngby, Denmark.
    Gudmundsson, Oddgeir
    Danfoss A/s, Nordborg, Denmark.
    Successful implementation of low temperature district heating case studies2021In: Energy Reports, E-ISSN 2352-4847, Vol. 7, no Suppl. 4, p. 483-490Article in journal (Refereed)
    Abstract [en]

    Low temperature district heating is recognized as a key technology for the (cost-) efficient integration of renewable energy and waste heat sources in our energy systems. Several studies indicate that a deployment of local district heating schemes is a key measure for reaching the politically set climate goals. Further, implementation of low temperature district heating systems are recommended for taking maximum advantages of synergies with other sectors for decarbonization of the heating sector. Within the IEA DHC Annex TS2 project already realized low temperature community energy system concepts as well as planned or designed systems are identified and visualized. Furthermore, projects showing an innovative heat use or operation of buildings are also included in the analyses. The different projects are assessed and compared. The presentation of the demonstrators is set up in such a way that knowledge is generated about the indoor heating system, the district heating system and of the competitiveness of low temperature district heating systems, giving the evidence that these systems are feasible, efficient and reliable under various boundary conditions. The demonstrators further indicate that there are existing challenges, where further research on innovative district heating concepts for integrating decentral feed-in of renewable energy is required. The demonstrators included in the IEA DHC Annex TS2 are analysed in regard to which elements of new knowledge they can generate. For each demonstrator there are specific innovations in focus. Furthermore, the case studies show that the related business models for the utilities change when system temperatures are lowered. The paper presents and discusses the results from current research work within of the IEA DHC Annex TS2 on Implementation of Low Temperature District Heating Systems (Averfalk et al., 2021; Annex TS2, 2021 [1]). © 2021 The Author(s)

  • 3.
    Sánchez-García, Luis
    et al.
    Halmstad University, School of Business, Innovation and Sustainability, The Rydberg Laboratory for Applied Sciences (RLAS).
    Averfalk, Helge
    Halmstad University, School of Business, Innovation and Sustainability, The Rydberg Laboratory for Applied Sciences (RLAS).
    Persson, Urban
    Halmstad University, School of Business, Innovation and Sustainability, The Rydberg Laboratory for Applied Sciences (RLAS).
    Further investigations on the Effective Width for district heating systems2021In: Energy Reports, E-ISSN 2352-4847, Vol. 7, no Suppl. 4, p. 351-358Article in journal (Refereed)
    Abstract [en]

    District Heating is a cornerstone for the decarbonisation of the heating and cooling sector in Europe. Nonetheless, this technology is currently absent in a majority of the continent’s urban areas, and hence the need for appropriate methods by which to estimate the cost, as well as underlying cost parameters, to assess the feasibility of developing district heating networks is of general interest. One key underlying cost parameter, the concept of Effective Width, which is the ratio between a land area and the trench length within that land area, is the focus quantity of this work. Effective Width enables a first order assessment of the total route length of pipes in a given urban area and, together with the average diameter of the pipes, allows an estimation of the investment cost of installing district heating pipes. However, initial implementations of the Effective Width have been based on rather limited empirical evidence, such as a small set of cases and often disregarding service pipes due to lack of data. Another shortcoming of previous studies is the extrapolation of established relations into more sparsely populated areas. By assembly of a richer database, which contains building data, heat consumption data in the supplied areas, as well as actual network information (numerical and geographical), provided by several district heating companies in Denmark and Sweden, the objectives of this study are twofold: first, to improve the general understanding of Effective Width and its relation to building density, and secondly, to study the particular case of sparse areas. The results of this study provide new insight to enhance our understanding of the Effective Width concept which may facilitate better assessments of future district heating systems. © 2021 The Author(s). Published by Elsevier Ltd.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf