hh.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dimkovski, Zlate
    et al.
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Cabanettes, Frédéric
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Löfgren, Hans
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Anderberg, Cecilia
    Volvo Cars.
    Ohlsson, Robert
    Volvo Powertrain.
    Rosén, Bengt-Göran
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Optimisation of Cylinder Liner Surface Finish by Slide Honing2012In: Proceedings of the Institution of mechanical engineers. Part B, journal of engineering manufacture, ISSN 0954-4054, E-ISSN 2041-2975, Vol. 226, no 4, p. 575-584Article in journal (Refereed)
    Abstract [en]

    Cylinder liner surface finish controls the frictional losses, oil consumption, and emissions of internal combustion engines to a large extent. In order to minimize such losses, it is important to optimize the liner surface topography by a consistent and more productive finishing process such as slide honing. This process employs diamond abrasives and has been recently introduced in the automotive industry. In this study, its potentials are explored, especially the winning combination of its key process parameters: the base honing pressure and plateau honing time that would yield an optimal liner surface finish. A number of truck engine liners were slide-honed by using different process parameters, samples of the liners were cut, and three-dimensional (3D) surface measurements were taken on a white light interferometer. Then, among others, the (deep honing) groove parameters, specific for liner surfaces, were computed from the measurements for building a large database for comparison and correlation. By simulating the contact and fluid mechanics between the measured liner topographies and a twin land oil control ring under mixed lubrication conditions, the friction mean effective pressure and oil passage rate for a range of engine speeds were calculated. These two parameters represent the liner's function associated with the engine's friction and oil consumption respectively. The results show that the lowest friction and oil flow are highly correlated with surfaces having smoother plateaus and smaller valleys, finished by using lower base honing pressure and longer plateau honing time. High correlations between the 3D roughness parameters were also found, enabling the selection and use of more stable and robust parameters in the quality control of the liner's surface finish. © IMechE 2012.

  • 2.
    Masurtschak, Simona
    et al.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.
    Friel, R. J.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.
    Harris, Russell A.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.
    New concept to aid efficient fibre integration into metal matrices during ultrasonic consolidation2017In: Proceedings of the Institution of mechanical engineers. Part B, journal of engineering manufacture, ISSN 0954-4054, E-ISSN 2041-2975, Vol. 231, no 7, p. 1105-1115Article in journal (Refereed)
    Abstract [en]

    Ultrasonic consolidation has been shown to be a viable metal-matrix-based smart composite additive layer manufacturing process. Yet, high quantity fibre integration has presented the requirement for a method of accurate positioning and fibre protection to maintain the fibre layout during ultrasonic consolidation. This study presents a novel approach for fibre integration during ultrasonic consolidation: channels are manufactured by laser processing on an ultrasonically consolidated sample. At the same time, controlled melt ejection is applied to aid accurate fibre placement and simultaneously reducing fibre damage occurrences. Microscopic, scanning electron microscopic and energy dispersive X-ray spectroscopic analyses are used for samples containing up to 10.5% fibres, one of the highest volumes in an ultrasonically consolidated composite so far. Up to 98% of the fibres remain in the channels after consolidation and fibre damage is reduced to less than 2% per sample. This study furthers the knowledge of high volume fibre embedment via ultrasonic consolidation for future smart material manufacturing. © Institution of Mechanical Engineers.

  • 3.
    Rosén, Bengt Göran
    et al.
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Anderberg, C.
    Volvo Cars Corporation, Göteborg, Sweden.
    Ohlsson, R.
    Volvo Power Train Corp., Volvo Group, Göteborg, Sweden.
    Parameter correlation study of cylinder liner roughness for production and quality control2008In: Proceedings of the Institution of mechanical engineers. Part B, journal of engineering manufacture, ISSN 0954-4054, E-ISSN 2041-2975, Vol. 222, no 11, p. 1475-1487Article in journal (Refereed)
    Abstract [en]

    Surface roughness plays an important role in the control of emissions and friction losses in the cylinder liner–piston ring system as well as securing economically favourable manufacturing. A number of different commercial cylinder liner types have been characterized using traditional two-dimensional stylus and ISO parameters together with the latest three-dimensional characterization. The results highlight the weak and strong correlations between different families of parameters traditionally used for liner surface specifications. The bearing curve based Rxq and Rk parameter families have been evaluated and show systematic and consistent differences when characterizing the same surface features when trying to establish independent characterization of the highly stratified, two-process cylinder liner surfaces. No significant improvement in discrimination results from using ensemble averages. Presentation of correlations in the form of topological diagrams helps to show when parameters with a high intrinsic variability can be effectively replaced by other more robust parameters with which they have a high correlation. Plateau parameters are in general more highly correlated than valley parameters. Three-dimensional parameters show high internal correlations and also correlate highly with some corresponding two-dimensional parameters.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf