hh.sePublications
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bååth, Lars
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK).
    A method for simultaneously measuring the positions of more than one surface in metallurgic processes1994Patent (Other (popular science, discussion, etc.))
  • 2.
    Bååth, Lars
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK).
    A method to simultaneously measuring the position of more than one surface in metallurgical processes1997Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    A method for measuring the position of at least one surface in a metallurgical process which includes the steps of providing a metallurgical melt, the metallurgical melt including at least a metal portion and a slag layer, providing a signal generator for generating signals at a plurality of frequencies over a frequency band, and providing an antenna for receiving the signals generated by the signal generator and for transmitting circularly polarized radio waves at the plurality of frequencies over the frequency band. The invention further includes the steps of disposing the antenna adjacent the metallurgical melt, transmitting the circularly polarized radio waves from the antenna toward the metallurgical melt, the circularly polarized radio waves being transmitted by the antenna at the plurality of frequencies over the frequency band, receiving reflected images of the transmitted radio waves through the antenna, the received reflected images of the transmitted radio waves having a substantially opposite circular polarization from the transmitted circularly polarized radio waves, determining a phase displacement between the transmitted radio waves and the received reflected images of the transmitted radio waves, transforming the determined phase displacement from a frequency to a time plane, and determining from the time plane transform a position of at least one surface of at least one of the metal portion and the slag layer.

  • 3.
    Campanini, D.
    et al.
    Department of Physics, Stockholm University, Stockholm, SE-106 91, Sweden.
    Diao, Zhu
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Rydh, Andreas
    Department of Physics, Stockholm University, Stockholm, SE-106 91, Sweden.
    Raising the superconducting Tc of gallium: In situ characterization of the transformation of α -Ga into β -Ga2018In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 18, article id 184517Article in journal (Refereed)
    Abstract [en]

    Gallium (Ga) displays several metastable phases. Superconductivity is strongly enhanced in the metastable β-Ga with a critical temperature Tc=6.04(5)K, while stable α-Ga has a much lower Tc<1.2K. Here we use a membrane-based nanocalorimeter to initiate the transition from α-Ga to β-Ga on demand, as well as study the specific heat of the two phases on one and the same sample. The in situ transformation is initiated by bringing the temperature to about 10K above the melting temperature of α-Ga. After such treatment, the liquid supercools down to 232K, where β-Ga solidifies. We find that β-Ga is a strong-coupling type-I superconductor with Δ(0)/kBTc=2.00(5) and a Sommerfeld coefficient γn=1.53(4)mJ/molK2, 2.55 times higher than that in the α phase. The results allow a detailed comparison of fundamental thermodynamic properties between the two phases. © 2018 American Physical Society.

  • 4.
    Malmberg, Donald
    et al.
    MEFOS—The Metallurgical Research Institute.
    Hahlin, Pär
    MEFOS—The Metallurgical Research Institute, Luleå, Sweden.
    Nilsson, Emil
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Microwave Technology in Steel and Metal Industry, an Overview2007In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 47, no 4, p. 533-538Article in journal (Refereed)
    Abstract [en]

    In many metallurgical operations, effective analysis of the processes can be very difficult with available technology. This is especially true if the analysis is to be performed on-line and in a harsh environment characterized by high temperatures, dust and liquid metal. Protection of the equipment requires both rugged encapsulation as well as elaborate sampling systems and exposure of the equipment to the hazardous environment must be minimised. Often this result in an increased level of service and maintenance requirements and, in the worst case, the maintenance cost might be so high that the equipment is not installed. Microwave technology is a versatile and powerful tool with many different applications in the scientific community. It is insensitive to dust and fume and, for several years, the technology has been tested at MEFOS and evaluated for different metallurgical processes. It has been applied to slag thickness measurement and slag composition in an induction furnace, 3D imaging of the burden surface in a charging model on pilot scale as well as raceway depth measurements in a Blast Furnace. The idea of using microwave technology for gas analysis in metallurgical processes has also been explored. However, despite its many advantages, microwave technology is still not employed extensively in the steel and metal industries. Copyright © 2007 ISIJ.

    Download full text (pdf)
    fulltext
  • 5.
    Masurtschak, S.
    et al.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom.
    Friel, R. J.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom.
    Gillner, A.
    Fraunhofer Institute for Laser Technology, Aachen, Germany.
    Ryll, J.
    Fraunhofer Institute for Laser Technology, Aachen, Germany.
    Harris, R. A.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom.
    Laser-Machined Microchannel Effect on Microstructure and Oxide Formation of an Ultrasonically Processed Aluminum Alloy2015In: Journal of engineering materials and technology, ISSN 0094-4289, E-ISSN 1528-8889, Vol. 137, no 1, article id 011006Article in journal (Refereed)
    Abstract [en]

    Ultrasonic consolidation (UC) has been proven to be a suitable method for fiber embedment into metal matrices. To aid successful embedment of high fiber volumes and to ensure their accurate positioning, research on producing microchannels in combination with adjacent shoulders formed by distribution of the melt onto unique UC sample surfaces with a fiber laser was carried out. This paper investigated the effect of the laser on the microstructure surrounding the channel within an Al 3003-H18 sample. The heat input and the extent of the heat-affected zone (HAZ) from one and multiple passes was examined. The paper explored the influence of air, as an assist gas, on the shoulders and possible oxide formation with regards to future bonding requirements during UC. The authors found that one laser pass resulted in a keyhole-shaped channel filled with a mixture of aluminum and oxides and a symmetrical HAZ surrounding the channel. Multiple passes resulted in the desired channel shape and a wide HAZ which appeared to be an eutectic microstructure. The distribution of molten material showed oxide formation all along the channel outline and especially within the shoulder. © 2015 by ASME.

  • 6.
    Millman, Stuart
    et al.
    British Steel plc Moorgate Rotherham, United Kingdom.
    Bååth, L.B.
    Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK).
    Malmberg, Donald
    MEFOS, Foundation for Metallurgical Research, Luleå, Sweden.
    Radio-wave inferometry for BOS slag control2001Report (Refereed)
    Abstract [en]

    The aim of the project is to use radio-wave interferometry to determine the BOF slag and metal heights in both a quiescent and a blowing BOS convertor. The hydrodynamics of the slag/metal emulsion and 1, 2 and possibly 3D representations of slag and metal movements during the blowing phase will be made. Process factors such as vessel shape, lance movements, bath agitation, flux/ore additions and fume generation will be considered.

  • 7.
    Nilsson, Emil
    et al.
    Halmstad University, School of Information Technology.
    Bååth, Lars B.
    Halmstad University, School of Business and Engineering (SET).
    Malmberg, Donald
    MEFOS, Metallurgic Research Institute, Luleå, Sweden.
    Blast Furnace Burden Topography2007In: Proceedings Conference on Mets & Props, 2007, 2007, p. 1-Conference paper (Other academic)
    Abstract [en]

    Within the global steel-and metal industry there is a growing need for new sensor systems to measure and control the industrial process. New technologies for new sensors are continuously being developed for an ever growing market. The growth in the steel making industry is based on ore and Blast Furnaces therefore play an increasingly important role for the production of hot liquid iron and steel. We present a new interferometer micro wave system to makethree dimensional topographic maps of the blast furnace burden surface. The Blast Furnace process is one of the oldest industrial processes. The furnace is tall and round. Layers of Coke ands iron ore are successively laid, and air, pre-heated to 1200 °C, as fuel to the process. The coke and iron layers become semi-liquid and then liquid in the cohesive zone. The carbon from the coke reacts with the oxygen in the ore (which is Fe2O3or Fe3O4) and form CO and CO2which goes off as off-gas. The iron, now mixed with some amount of carbon, is tapped in liquid form from the bottom. This is then taken to a converter, where oxygen is added to remove the carbon to form the final product of liquid steel.

    Download (pdf)
    SUMMARY01
  • 8.
    Rebeggiani, Sabina
    et al.
    Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Rosén, Bengt-Göran
    Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK), Functional Surfaces.
    Sandberg, Alf
    Uddeholms AB, Hagfors, Sweden.
    A quantitative method to estimate high gloss polished tool steel surfaces2011In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 311, no 1, article id 012004Article in journal (Refereed)
    Abstract [en]

    Visual estimations are today the most common way to assess the surface quality of moulds and dies; a method that are both subjective and, with today’s high demands on surfaces, hardly usable to distinguish between the finest surface qualities. Instead a method based on non-contact 3D-surface texture analysis is suggested. Several types of tool steel samples, manually as well as machine polished, were analysed to study different types of surface defects such as pitting, orange peel and outwardly features. The classification of the defect structures serves as a catalogue where known defects are described. Suggestions of different levels of ‘high surface quality’ defined in numerical values adapted to high gloss polished tool steel surfaces are presented. The final goal is to develop a new manual that can work as a ‘standard’ for estimations of tool steel surfaces for steel producers, mould makers, polishers etc.

    Download full text (pdf)
    fulltext
  • 9.
    Svensson, Martin
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Johannesson, Joacim
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    The Human Gyroscope: A prototype2013Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Download full text (pdf)
    fulltext
  • 10.
    Wiklund, Daniel
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK).
    Tribology of stamping: the influence of designed steel sheet surface topography on friction2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Tribology is the science of friction, wear, and lubrication; the interaction of surfaces in relative motion. The tribological conditions in sheet metal forming influences the flow of material in forming operations, the strain distributions of sheet material, extent of wear, and thereby the quality of products. The purpose of the thesis is to increase the knowledge of why and how sheet surface topography influence the frictional response in stamping, to characterise the geometrical properties, and make results applicable for industry. The frictional response of different surface topographies have been measured in a Bending Under Tension test under mixed lubricated conditions. The studied materials have been stainless steel sheets and uncoated and coated carbon steel sheets. The results did show the influence of roughness, skewness, and anisotropy of surface topography. The findings could be explained by the theory of pad bearings. A new functional 3D parameter (Sq>0) was developed for pressing performance that is sensitive to the effects of roughness and skewness. The texture-aspect ratio parameter (Str) was found to be correlated to the anisotropical behaviour of the frictional response. The results are very tangible and mean increased control of stamping operations. An initial step was taken to introduce more advanced tribological models in FE simulation of sheet metal forming operations. The aim is to decrease the trial-and-error time in the design process of dies and tools. A friction model considering surface topography (Sq>0), sliding velocity, lubricant viscosity, and apparent pressure, was successfully implemented. Simulations of a part were evaluated with real stamping tryouts. The results did show the potential of improving the precision in forming simulations with more advanced tribological models. Finally, theory and characterisation methods of active micro-oil pockets in the contact zone of tool and sheet were investigated. The real contact area was shown to be the critical feature to determine. Therefore, two topographical methods and one microscope-imaging processing technique were studied, but no method was found to be viable. However, the experimental results did not confirm the importance of microoil pockets in mixed lubricated regime.

  • 11.
    Zheng, Qiye
    et al.
    Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana‐Champaign, Urbana, Illinois, USA.
    Zhu, Gaohua
    Materials Research Department, Toyota Research Institute of North America, Ann Arbor, Michigan, USA.
    Diao, Zhu
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Department of Physics, Stockholm University, Stockholm, Sweden.
    Banerjee, Debasish
    Materials Research Department, Toyota Research Institute of North America, Ann Arbor, Michigan, USA.
    Cahill, David G.
    Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana‐Champaign, Urbana, Illinois, USA.
    High Contrast Thermal Conductivity Change in Ni-Mn-In Heusler Alloys near Room Temperature2019In: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648, Vol. 21, no 5, article id 1801342Article in journal (Refereed)
    Abstract [en]

    Materials with an abrupt transition between a low and a high thermal conductance state at a critical temperature would be useful for thermal regulation applications. Here, the authors report a high contrast reversible thermal conductivity change through the thermally-induced martensitic transition (MT) in Ni-Mn-In alloys. The authors measure the thermal conductivity of a wide temperature range 130 < T < 530 K using time-domain thermoreflectance (TDTR). The thermal conductivity of these alloys increases from ≈7.0-8.5 W m−1 K−1 to ≈11.5-13.0 W m−1 K−1 through the MT near 300 K as temperature rises, with a rate of change among the highest yet reported in solid-state materials with thermally-induced phase transitions. Based on Hall resistivity measurements, the authors further show that the change of thermal conductivity is dominated by the electronic contribution, which results from a unique carrier mobility change through the MT. Their findings highlight the interplay between the structural disorders and the thermal transport in alloys through solid-state phase transitions and open a new avenue in the search of high-performance materials for thermal regulation. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf