hh.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bååth, Lars
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK).
    A method for simultaneously measuring the positions of more than one surface in metallurgic processes1994Patent (Other (popular science, discussion, etc.))
  • 2.
    Bååth, Lars
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK).
    A method to simultaneously measuring the position of more than one surface in metallurgical processes1997Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    A method for measuring the position of at least one surface in a metallurgical process which includes the steps of providing a metallurgical melt, the metallurgical melt including at least a metal portion and a slag layer, providing a signal generator for generating signals at a plurality of frequencies over a frequency band, and providing an antenna for receiving the signals generated by the signal generator and for transmitting circularly polarized radio waves at the plurality of frequencies over the frequency band. The invention further includes the steps of disposing the antenna adjacent the metallurgical melt, transmitting the circularly polarized radio waves from the antenna toward the metallurgical melt, the circularly polarized radio waves being transmitted by the antenna at the plurality of frequencies over the frequency band, receiving reflected images of the transmitted radio waves through the antenna, the received reflected images of the transmitted radio waves having a substantially opposite circular polarization from the transmitted circularly polarized radio waves, determining a phase displacement between the transmitted radio waves and the received reflected images of the transmitted radio waves, transforming the determined phase displacement from a frequency to a time plane, and determining from the time plane transform a position of at least one surface of at least one of the metal portion and the slag layer.

  • 3.
    Campanini, D.
    et al.
    Department of Physics, Stockholm University, Stockholm, SE-106 91, Sweden.
    Diao, Zhu
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab.
    Rydh, Andreas
    Department of Physics, Stockholm University, Stockholm, SE-106 91, Sweden.
    Raising the superconducting Tc of gallium: In situ characterization of the transformation of α -Ga into β -Ga2018In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 18, article id 184517Article in journal (Refereed)
    Abstract [en]

    Gallium (Ga) displays several metastable phases. Superconductivity is strongly enhanced in the metastable β-Ga with a critical temperature Tc=6.04(5)K, while stable α-Ga has a much lower Tc<1.2K. Here we use a membrane-based nanocalorimeter to initiate the transition from α-Ga to β-Ga on demand, as well as study the specific heat of the two phases on one and the same sample. The in situ transformation is initiated by bringing the temperature to about 10K above the melting temperature of α-Ga. After such treatment, the liquid supercools down to 232K, where β-Ga solidifies. We find that β-Ga is a strong-coupling type-I superconductor with Δ(0)/kBTc=2.00(5) and a Sommerfeld coefficient γn=1.53(4)mJ/molK2, 2.55 times higher than that in the α phase. The results allow a detailed comparison of fundamental thermodynamic properties between the two phases. © 2018 American Physical Society.

  • 4.
    Masurtschak, S.
    et al.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom.
    Friel, R. J.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom.
    Gillner, A.
    Fraunhofer Institute for Laser Technology, Aachen, Germany.
    Ryll, J.
    Fraunhofer Institute for Laser Technology, Aachen, Germany.
    Harris, R. A.
    Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom.
    Laser-Machined Microchannel Effect on Microstructure and Oxide Formation of an Ultrasonically Processed Aluminum Alloy2015In: Journal of engineering materials and technology, ISSN 0094-4289, E-ISSN 1528-8889, Vol. 137, no 1, article id 011006Article in journal (Refereed)
    Abstract [en]

    Ultrasonic consolidation (UC) has been proven to be a suitable method for fiber embedment into metal matrices. To aid successful embedment of high fiber volumes and to ensure their accurate positioning, research on producing microchannels in combination with adjacent shoulders formed by distribution of the melt onto unique UC sample surfaces with a fiber laser was carried out. This paper investigated the effect of the laser on the microstructure surrounding the channel within an Al 3003-H18 sample. The heat input and the extent of the heat-affected zone (HAZ) from one and multiple passes was examined. The paper explored the influence of air, as an assist gas, on the shoulders and possible oxide formation with regards to future bonding requirements during UC. The authors found that one laser pass resulted in a keyhole-shaped channel filled with a mixture of aluminum and oxides and a symmetrical HAZ surrounding the channel. Multiple passes resulted in the desired channel shape and a wide HAZ which appeared to be an eutectic microstructure. The distribution of molten material showed oxide formation all along the channel outline and especially within the shoulder. © 2015 by ASME.

  • 5.
    Millman, Stuart
    et al.
    British Steel plc Moorgate Rotherham, United Kingdom.
    Bååth, L.B.
    Halmstad University, School of Business, Engineering and Science, Mechanical Engineering and Industrial Design (MTEK).
    Malmberg, Donald
    MEFOS, Foundation for Metallurgical Research, Luleå, Sweden.
    Radio-wave inferometry for BOS slag control2001Report (Refereed)
    Abstract [en]

    The aim of the project is to use radio-wave interferometry to determine the BOF slag and metal heights in both a quiescent and a blowing BOS convertor. The hydrodynamics of the slag/metal emulsion and 1, 2 and possibly 3D representations of slag and metal movements during the blowing phase will be made. Process factors such as vessel shape, lance movements, bath agitation, flux/ore additions and fume generation will be considered.

  • 6.
    Svensson, Martin
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Johannesson, Joacim
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    The Human Gyroscope: A prototype2013Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
  • 7.
    Wiklund, Daniel
    Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK).
    Tribology of stamping: the influence of designed steel sheet surface topography on friction2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Tribology is the science of friction, wear, and lubrication; the interaction of surfaces in relative motion. The tribological conditions in sheet metal forming influences the flow of material in forming operations, the strain distributions of sheet material, extent of wear, and thereby the quality of products. The purpose of the thesis is to increase the knowledge of why and how sheet surface topography influence the frictional response in stamping, to characterise the geometrical properties, and make results applicable for industry. The frictional response of different surface topographies have been measured in a Bending Under Tension test under mixed lubricated conditions. The studied materials have been stainless steel sheets and uncoated and coated carbon steel sheets. The results did show the influence of roughness, skewness, and anisotropy of surface topography. The findings could be explained by the theory of pad bearings. A new functional 3D parameter (Sq>0) was developed for pressing performance that is sensitive to the effects of roughness and skewness. The texture-aspect ratio parameter (Str) was found to be correlated to the anisotropical behaviour of the frictional response. The results are very tangible and mean increased control of stamping operations. An initial step was taken to introduce more advanced tribological models in FE simulation of sheet metal forming operations. The aim is to decrease the trial-and-error time in the design process of dies and tools. A friction model considering surface topography (Sq>0), sliding velocity, lubricant viscosity, and apparent pressure, was successfully implemented. Simulations of a part were evaluated with real stamping tryouts. The results did show the potential of improving the precision in forming simulations with more advanced tribological models. Finally, theory and characterisation methods of active micro-oil pockets in the contact zone of tool and sheet were investigated. The real contact area was shown to be the critical feature to determine. Therefore, two topographical methods and one microscope-imaging processing technique were studied, but no method was found to be viable. However, the experimental results did not confirm the importance of microoil pockets in mixed lubricated regime.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf