hh.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Erik
    et al.
    Halmstad University, School of Business and Engineering (SET).
    Bengtsson, Per-Johan
    Halmstad University, School of Business and Engineering (SET).
    Dark Ages Lunar Interferometer (DALI): Deployment-Rover - Mobility System2013Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    This thesis is issued in collaboration with the Jet Propulsion Laboratory (JPL) in Pasadena, California. JPL's primary function is the construction and operation of robotic planetary spacecraft. At the time being JPL has 22 spacecraft and 10 instruments conducting active missions.

    The "Dark Ages" represent the last frontier in cosmology, the era between the genesis of the cosmic microwave background (CMB) and the formation of the first stars. During the Dark Ages, when the Universe was unlit by any star, the only detectable signal is likely to be that from neutral hydrogen (HI).

    The HI absorption occurs in dark matter-dominated overdensities, locations that will later become the birthplaces of the first stars. Tracing this evolution will provide crucial insights into the properties of dark matter and potentially reveal aspects of cosmic inflation. This could be accomplished using a radio telescope located on the far side of the Moon, the only site in the solar system shielded from human-generated interference and, at night, from solar radio emissions.

    Our objective has been the development of the concept of an autonomous rover that would be capable of deploying a large number of low frequency radio antennas on the lunar surface. This is an enabling task for the eventual creation of a radio telescope.

    The project at Halmstad University was divided into three sub-projects, where our area of responsibility has been the development of a concept of the rover's mobility system.

    The result of the project is the concept of a "Rocker-Bogie" suspension system, created in a 3D-environment. A concept which underwent a series of digital analyses and simulations to ensure the compliance with required specifications.

  • 2.
    Goulas, A.
    et al.
    Loughborough University, Loughborough, United Kingdom.
    Friel, R. J.
    Loughborough University, Loughborough, United Kingdom.
    Laser sintering of ceramic materials for aeronautical and astronautical applications2017In: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications / [ed] Milan Brandt, Amsterdam: Woodhead Publishing Limited, 2017, p. 373-398Chapter in book (Other academic)
    Abstract [en]

    Ceramic products have been manufactured for many decades via conventional techniques such as extrusion, oven sintering, and casting. However, these methods have several inherent disadvantages with regard to the possible shape and structure, which limits their application range. The advent of laser additive manufacturing (LAM) is a key enabler in creating ceramic components with considerably greater design freedom. The technology is allowing the creation of ceramic components that not only meet the increasing material requirements of aero/astro applications but also provide new opportunities in terms of the complex structures that can now be produced. Ceramics represents a new frontier for these LAM systems – one with many challenges and research needs; however, the material properties that ceramics offer over polymers and metals make the additive manufacturing of ceramic components an enticing engineering opportunity for aerospace, astronautical and potentially many other technology areas. This chapter presents an overview of the state of the art of ceramic materials in LAM for aerospace and astronautic applications. Section 14.2 explains the fundamentals of ceramic materials and includes examples of their traditional manufacturing methods. Section 14.3 focuses on the application of ceramic materials to the challenging engineering realm of aeronautics and astronautics, accompanied by examples from their main application areas (eg, thermal and ballistic shielding). Section 14.4 goes into depth on LAM, explaining the challenges and implications of laser processing ceramics, the benefits of the approach and examples from the current state of the art. Finally, 14.5 Future developments, 14.6 Conclusions highlight some of the likely future developments in the area and conclude the chapter. © 2017 Elsevier Ltd. All rights reserved.

  • 3.
    Stanimirovic, Tomislav
    et al.
    Halmstad University, School of Business and Engineering (SET).
    Winberg, Johan
    Halmstad University, School of Business and Engineering (SET).
    DARK AGES LUNAR INTERFEROMETER (DALI): DEPLOYMENT-ROVER - CHASSIS2013Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    In this thesis we have looked at the possibility of using a rover for deployment oflunar interferometers on the far side of the Moon. This project was made togetherwith two other groups from the mechanical engineering program at HalmstadUniversity. The project was divided into three units and we had the mainresponsibility for the design of the chassis.The goal of this project is to create a better understanding of the origin of the universeand how it still to this day keeps changing. This is believed to be achievable by usinglunar interferometers that will collect data in form of cosmic microwaves from outerspace. The lunar interferometers will be placed at the far side of the Moon since thisis the only site in solar system that is shielded from human-generated interference.The work was completed in collaboration with JPL and NASA, which are worldleading designers and manufacturers of space-related products.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf