hh.sePublications
Change search
Refine search result
12345 1 - 50 of 237
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abbas, Taimoor
    et al.
    Lund Univ, Elect & Informat Technol Dept, S-22100 Lund, Sweden..
    Sjöberg, Katrin
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Kåredal, Johan
    Lund Univ, Elect & Informat Technol Dept, S-22100 Lund, Sweden..
    Tufvesson, Fredrik
    Lund Univ, Elect & Informat Technol Dept, S-22100 Lund, Sweden..
    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations2015In: International Journal of Antennas and Propagation, ISSN 1687-5869, E-ISSN 1687-5877, article id 190607Article in journal (Refereed)
    Abstract [en]

    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non-line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.

  • 2.
    Agelis, Sacki
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Jonsson, Magnus
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).
    Visualizing the Potential of Reconfigurable Shuffle-Patterns in Optoelectronic Routers by the Use of MOEMS2004In: Proceedings of the IASTED International Conference Communication Systems and Networks / [ed] Salvador C.E.P., Calgary, Canada: ACTA Press, 2004, p. 148-154Conference paper (Refereed)
    Abstract [en]

    A reconfigurable high performance multistage router architecture is presented and simulated. The router backbone network is an optical shuffle exchange network that has the power of reconfigurability through the use of micro-optical-electrical mechanical systems (MOEMS). The router is subjected to different application classes. The application classes have different characteristics in terms of symmetric/asymmetric traffic properties. We compare our reconfigurable shuffle-pattern for all three application classes for the specified router architecture.

  • 3.
    Ahmed, Rizwan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Abbas, Shahid
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Electrical and Optical Characteristics of InP Nanowires based p-i-n Photodetectors2010Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Photodetectors are a kind of semiconductor devices that convert incoming light to an electrical signal. Photodetectors are classified based on their different structure, fabrication technology, applications and different sensitivity. Infrared photodetectors are widely used in many applications such as night vision, thermal cameras, remote temperature sensing, and medical diagnosis etc.

     

    All detectors have material inside that is sensitive to incoming light. It will absorb the photons and, if the incoming photons have enough energy, electrons will be excited to higher energy levels and if these electrons are free to move, under the effect of an external electric field, a photocurrent is generated.

     

    In this project Fourier Transform Infrared (FT-IR) Spectroscopy is used to investigate a new kind of photodiodes that are based on self-assembled semiconductor nanowires (NWs) which are grown directly on the substrate without any epi-layer. The spectrally resolved photocurrent (at different applied biases) and IV curves (in darkness and illumination) for different temperatures have been studied respectively. Polarization effects (at low and high Temperatures) have been investigated.  The experiments are conducted for different samples with high concentration of NWs as well as with lower concentration of NWs in the temperature range from 78 K (-195ºC) to 300 (27ºC). These photodiodes are designed to work in near infrared (NIR) spectral range.

     

    The results show that the NW photodetectors indeed are promising devices with fairly high break down voltage, change of photocurrent spectra with polarized light, low and constant reverse saturation current (Is). The impact of different polarized light on photocurrent spectra has been investigated and an attempt has been made to clarify the observed double peak of InP photocurrent spectrum. Our investigations also include a comparison to a conventional planar InP p-i-n photodetector.

     

    Download full text (pdf)
    FULLTEXT01
  • 4.
    Akinola, Azeez Paul
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Zhang, Chong
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Evaluate Security on the Internet Cafe2013Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Internet security (Network security) is a big topic that is very important in our society communication system, but it is extremely dynamic and wide in scope. This is the reason that many companies and organizations invest heavily in a dedicated infrastructure security and highly trained specialists.The aim of security monitoring and preventing the network from cyber threats requires vigilance over the network equipment. The case study of this thesis is to provide the possible solution to the problems encountered by the namely network users such as: Internet Game Center (Centrum Halmstad, Sweden) and, the Blueville Internet Cafe (Ede, Nigeria).Our research and information collected over the telephone and a visit at the nearest office. We concluded that both companies mentioned above experienced similar cyber threats. The two companies have internal and external threats such as accessing the network via ssh by using it brute force attack, network war-driver, the installation of spyware, password sniffer, viruses, SQL injection and PHP attacks (web attacks) on the networks. The cyber threats virus and spyware are among the big internet threat to users, organization and companies.We carry out experiments in the lab to tests for threats such as brute force (ssh) attack, password sniffer and war-driver in the Wireless environment. From the results, we are able to the select WPA2 using 802.1x as the best possible way to limit and reduce the strength of cyber-attacks, and as a suggested solution to the namely café problems in our report. We also list different suggestion and solution to the cyber café attacks from our research papers and information gathers from different sources such as library, internet, seminar and textbooks.

    Download full text (pdf)
    fulltext
  • 5.
    Alendal, Gunnar
    et al.
    NTNU, Gjøvik, Norway.
    Dyrkolbotn, Geir Olav
    NTNU, Gjøvik, Norway & Norwegian Defence Cyber Academy (NDCA), Jørstadmoen, Norway.
    Axelsson, Stefan
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Forensics acquisition – Analysis and circumvention of samsung secure boot enforced common criteria mode2018In: Digital Investigation. The International Journal of Digital Forensics and Incident Response, ISSN 1742-2876, E-ISSN 1873-202X, Vol. 24, no Suppl., p. S60-S67Article in journal (Refereed)
    Abstract [en]

    The acquisition of data from mobile phones have been a mainstay of criminal digital forensics for a number of years now. However, this forensic acquisition is getting more and more difficult with the increasing security level and complexity of mobile phones (and other embedded devices). In addition, it is often difficult or impossible to get access to design specifications, documentation and source code. As a result, the forensic acquisition methods are also increasing in complexity, requiring an ever deeper understanding of the underlying technology and its security mechanisms. Forensic acquisition techniques are turning to more offensive solutions to bypass security mechanisms, through security vulnerabilities. Common Criteria mode is a security feature that increases the security level of Samsung devices, and thus make forensic acquisition more difficult for law enforcement. With no access to design documents or source code, we have reverse engineered how the Common Criteria mode is actually implemented and protected by Samsung's secure bootloader. We present how this security mode is enforced, security vulnerabilities therein, and how the discovered security vulnerabilities can be used to circumvent Common Criteria mode for further forensic acquisition. © 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS.

  • 6.
    Alvarez Fernandez, Stephanie Milena
    et al.
    Halmstad University, School of Information Technology.
    Marinho, Marco
    Halmstad University, School of Information Technology.
    Vakilzadeh, Majid
    Zenseact AB, Gothenburg, Sweden.
    Vinel, Alexey
    Halmstad University, School of Information Technology.
    Highway On-Ramp Merging for Mixed Traffic: Recent Advances and Future Trends2021In: 2021 IEEE 29th International Conference on Network Protocols (ICNP), Piscataway: Institute of Electrical and Electronics Engineers (IEEE), 2021Conference paper (Refereed)
    Abstract [en]

    Due to the ability to support a wide range of applications and to involve infrastructure elements, connected and automated vehicles (CAVs) technology has played an important role in the development of cooperative intelligent transport systems. Thus, with the available sensing system, CAVs can perceive the surrounding environment. Indeed, due to the involvement of CAVs, communication of vehicles to other related devices using vehicle-to-everything (V2X) communication plays critical roles. This paper summarizes the research and development trends when proposing driving models, with a particular attention to highway on-ramp merging scenarios. The challenges and future research directions are also presented ©2021 IEEE

  • 7.
    Amadeo, Marica
    et al.
    Dipartimento DIIES, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy.
    Campolo, Claudia
    Dipartimento DIIES, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy.
    Molinaro, Antonella
    Dipartimento DIIES, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy & Laboratoire des Signaux et Systémes (L2S), CentraleSupélec-CNRS-Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
    Harri, Jerome
    Department of Communication Systems, EURECOM, Sophia Antipolis, France.
    Rothenberg, Christian Esteve
    School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Campinas, Brazil.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Enhancing the 3GPP V2X Architecture with Information-Centric Networking2019In: Future Internet, E-ISSN 1999-5903, Vol. 11, no 9, article id 199Article in journal (Refereed)
    Abstract [en]

    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution. © 2019 by the authors.

  • 8.
    Amador Molina, Oscar
    et al.
    Halmstad University, School of Information Technology.
    Aramrattana, Maytheewat
    Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
    Vinel, Alexey
    Halmstad University, School of Information Technology. Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
    A Survey on Remote Operation of Road Vehicles2022In: IEEE Access, E-ISSN 2169-3536, Vol. 10, p. 130135-130154Article, review/survey (Refereed)
    Abstract [en]

    In recent years, the use of remote operation has been proposed as a bridge towards driverless mobility by providing human assistance remotely when an automated driving system finds a situation that is ambiguous and requires input from a remote operator. The remote operation of road vehicles has also been proposed as a way to enable drivers to operate vehicles from safer and more comfortable locations. While commercial solutions for remote operation exist, remaining challenges are being tackled by the research community, who is continuously testing and validating the feasibility of deploying remote operation of road vehicles on public roads. These tests range from the technological scope to social aspects such as acceptability and usability that affect human performance. This survey presents a compilation of works that approach the remote operation of road vehicles. We start by describing the basic architecture of remote operation systems and classify their modes of operation depending on the level of human intervention. We use this classification to organize and present recent and relevant work on the field from industry and academia. Finally, we identify the challenges in the deployment of remote operation systems in the technological, regulatory, and commercial scopes.

    Download full text (pdf)
    fulltext
  • 9.
    Amador Molina, Oscar
    et al.
    Halmstad University, School of Information Technology.
    Ronelöv, Erik
    AstaZero AB, Gothenburg, Sweden.
    Boustedt, Katarina
    AstaZero AB, Gothenburg, Sweden.
    Blidkvist, Jesper
    AstaZero AB, Gothenburg, Sweden.
    Vinel, Alexey
    Karlsruhe Institute of Technology, Karlsruhe, Germany.
    Protection of Vulnerable Road Users using Hybrid Vehicular Networks2022In: 2022 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Piscataway: IEEE, 2022Conference paper (Refereed)
    Abstract [en]

    The use of reactive detection technologies such as passive and active sensors for avoiding car accidents involving pedestrians and other Vulnerable Road Users (VRU) is one of the cornerstones of Cooperative, Connected, and Automated Mobility (CCAM). However, CCAM systems are not yet present in all roads at all times. The use of currently available technologies that are embedded in smartphones, such as location services and Internet access, are enablers for the early detection of VRUs. This paper presents the proof-of-concept of a system that provides vehicles with enough information about the presence of VRUs by using public cellular networks, an MQTT broker, and IEEE 802.11p-enabled hardware (a roadside unit and an on-board unit). The system was tested in an urban environment and in a test track, where its feasibility was evaluated. Results were satisfactory, proving the system is reliable enough to alert of the sudden appearance of a VRU in time for the driver to react. © 2022 IEEE.

    Download full text (pdf)
    fulltext
  • 10.
    Amador, Oscar
    et al.
    Halmstad University.
    Urueña, Manuel
    Universidad Internacional De La Rioja, Logroño, Spain.
    Calderon, Maria
    Universidad Carlos III De Madrid, Madrid, Spain.
    Soto, Ignacio
    Universidad Carlos Iii De Madrid, Madrid, Spain.
    Evaluation and improvement of ETSI ITS Contention-Based Forwarding (CBF) of warning messages in highway scenarios2022In: Vehicular Communications, ISSN 2214-2096, E-ISSN 2214-210X, Vol. 34, article id 100454Article in journal (Refereed)
    Abstract [en]

    This paper evaluates the performance of the ETSI Contention-Based Forwarding (CBF) GeoNetworking protocol for distributing warning messages in highway scenarios, including its interaction with the Decentralized Congestion Control (DCC) mechanism. Several shortcomings of the standard ETSI CBF algorithm are identified, and we propose different solutions to these problems, which are able to reduce the number of transmissions by an order of magnitude, while reducing the message end-to-end delay and providing a reliability close to 100% in a large area of interest. © 2022 Elsevier Inc.

  • 11.
    Andreev, Sergey
    et al.
    Department of Communications Engineering, Tampere University of Technology, Finland.
    Galinina, Olga
    Department of Communications Engineering, Tampere University, Finland of Technology.
    Vinel, Alexey
    Department of Communications Engineering, Tampere University, Finland of Technology.
    Performance Evaluation of a Three Node Client Relay System2011In: International Journal of Wireless Networks and Broadband Technologies, ISSN 2155-6261, Vol. 1, no 1, p. 73-84Article in journal (Refereed)
    Abstract [en]

    In this paper, the authors examine a client relay system comprising three wireless nodes. Closed-form expressions for mean packet delay, as well as for throughput, energy expenditure, and energy efficiency of the source nodes are also obtained. The precision of the established parameters is verified by means of simulation.

  • 12.
    Araujo, Hugo
    et al.
    Universidade Federal de Pernambuco, Recife, Brazil.
    Hoenselaar, Ties
    TU Eindhoven, Eindhoven, the Netherlands.
    Mousavi, Mohammad Reza
    University of Leicester, Leicester, England.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Connected Automated Driving: A Model-Based Approach to the Analysis of Basic Awareness Services2020In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway: Institute of Electrical and Electronics Engineers (IEEE), 2020, p. 1-7Conference paper (Refereed)
    Abstract [en]

    Cooperative awareness basic services are key components of several Connected Autonomous Vehicles (CAV) functions. We present a rigorous approach to the analysis of cooperative awareness basic services in a CAV setup. Our approach addresses a major challenge in the traditional analysis techniques of such services, namely, coming up with effective scenarios that can meaningfully cover their various behaviours, exercise the limits of these services and come up with a quantitative means for design-space exploration.Our approach integrates model-based testing and search-based testing to automatically generate scenarios and steer the scenario generation process towards generating inputs that can lead to the most severe hazards. Additionally we define other objectives that maximise the coverage of the model and the diversity of the generated test inputs. The result of applying our technique to the analysis of cooperative awareness services leads to automatically generated hazardous scenarios for parameters that abide by the ETSI ITS-G5 vehicular communications standard. We show that our technique can be used as an effective design-space exploration method and can be used to design adaptive protocols that can mitigate the hazards detected through our initial analysis. © 2020 by IEEE

  • 13.
    Aujla, Gagangeet Singh
    et al.
    Thapar University, Patiala, India.
    Chaudhary, Rajat
    Thapar University, Patiala, India.
    Kumar, Neeraj
    Thapar University, Patiala, India.
    Rodrigues, Joel J. P. C.
    National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí, Brazil; University of Beira Interior, Covilhã, Portugal; ITMO University, St. Petersburg, Russia; University of Fortaleza (Unifor), Fortaleza, Brazil.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Data Offloading in 5G-Enabled Software-Defined Vehicular Networks: A Stackelberg-Game-Based Approach2017In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 55, no 8, p. 100-108Article in journal (Refereed)
    Abstract [en]

    Data offloading using vehicles is one of the most challenging tasks to perform due to the high mobility of vehicles. There are many solutions available for this purpose, but due to the inefficient management of data along with the control decisions, these solutions are not adequate to provide data offloading by making use of the available networks. Moreover, with the advent of 5G and related technologies, there is a need to cope with high speed and traffic congestion in the existing infrastructure used for data offloading. Hence, to make intelligent decisions for data offloading, an SDN-based scheme is presented in this article. In the proposed scheme, an SDNbased controller is designed that makes decisions for data offloading by using the priority manager and load balancer. Using these two managers in SDN-based controllers, traffic routing is managed efficiently even with an increase in the size of the network. Moreover, a single-leader multi-follower Stackelberg game for network selection is also used for data offloading. The proposed scheme is evaluated with respect to several parameters where its performance was found to be superior in comparison to the existing schemes. © Copyright 2017 IEEE

  • 14.
    Aydogdu, Canan
    et al.
    Chalmers University of Technology, Gothenburg, Sweden.
    Keskin, Musa Furkan
    Chalmers University of Technology, Gothenburg, Sweden.
    Carvajal, Gisela K.
    Qamcom Research, Gothenburg, Sweden.
    Eriksson, Olof
    Veoneer, Stockholm, Sweden.
    Hellsten, Hans
    Saab, Linköping, Sweden.
    Herbertsson, Hans
    Veoneer, Stockholm, Sweden.
    Nilsson, Emil
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Rydström, Mats
    Veoneer, Stockholm, Sweden.
    Vanäs, Karl
    Volvo Car Corporation, Gothenburg, Sweden.
    Mete, Mustafa
    Chalmers University of Technology, Gothenburg, Sweden.
    Sandrup, Per
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Wymeersch, Henk
    Chalmers University of Technology, Gothenburg, Sweden.
    Radar Interference Mitigation through Active Coordination2021In: 2021 IEEE Radar Conference (RadarConf21), IEEE, 2021, p. 1-6Conference paper (Refereed)
    Abstract [en]

    Intelligent transportation is heavily reliant on radar, which have unique robustness under heavy rain/fog/snow and poor light conditions. With the rapid increase of the number of radars used on modern vehicles, most operating in the same frequency band, the risk of radar interference becomes an important issue. As in radio communication, interference can be mitigated through coordination. We present and evaluate two approaches for radar interference coordination, one for FMCW and one for OFDM, and highlight their challenges and opportunities. © 2021 IEEE.

  • 15.
    Baiocchi, Andrea
    et al.
    Dept. of Information Engineering, Electronics and Telecommunications (DIET), University of Rome Sapienza, Rome, Italy.
    Turcanu, Ion
    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
    Lyamin, Nikita
    Volvo Car Corporation, Göteborg, Sweden.
    Sjöberg, Katrin
    Scania CV AB, Göteborg, Sweden.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Age of Information in IEEE 802.11p2021In: 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), IEEE, 2021, p. 1024-1031Conference paper (Refereed)
    Abstract [en]

    Vehicle-to-Everything (V2X) communication is essential for facilitating connected and automated driving, where vehicles and other road traffic participants share data instantaneously and cooperate to solve tricky traffic situations in milliseconds. This paper proposes two stochastic models for the V2X standard IEEE 802.11p to characterize amongst other things the Age of Information (AoI), a recently-proposed metric that measures the freshness of information. The first model is based on renewal process analysis of a tagged station with mean field approximation, while the second one adopts Markov chain approach with network level view. Analytical results show that IEEE 802.11p, given its adaptability to event-triggered and aperiodic messaging, supports advanced cooperative driving scenarios.

  • 16.
    Baiocchi, Andrea
    et al.
    Electronics and Telecommunications (DIET), University of Rome, Sapienza, Italy.
    Turcanu, Ion
    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg, Luxembourg.
    Vinel, Alexey
    Halmstad University, School of Information Technology.
    To Buffer or Not To Buffer: IEEE 802.11p/bd Performance Under Different Buffering Strategies2021In: 2021 33th International Teletraffic Congress (ITC-33), Piscataway: Institute of Electrical and Electronics Engineers (IEEE), 2021Conference paper (Refereed)
    Abstract [en]

    A fundamental paradigm of the Internet of Things (IoT) consists of agents that communicate updates to each other to perform joint actions, e.g., cooperative awareness in transportation systems, swarms of Unmanned Aerial Vehicles (UAVs), fleet of robots, automated assembly lines and logistics. A common feature of update messaging is emphasis on reliable throughput and freshness of collected data. We develop an analytical model that yields accurate predictions of all relevant metrics, both in terms of moments and probability distributions, for the case of one-hop broadcast update messages exchanged by using a CSMA-based wireless network. The model is validated against simulations and then applied to compare two update message scheduling approaches: providing a minimal buffer resource or providing no buffer. Surprisingly, we prove that having no buffer improves Age of Information (AoI) performance as well as message delivery rate, in spite of dropped packets. This is essentially due to much smaller congestion and hence collision probability in the wireless channel. From a system point of view this suggests a simple design of message handling, with no need of buffering and overwriting older messages. From a modeling point of view, the result supports the definition of simpler models that need not keep into account buffer state. © 2021 by IEEE.

  • 17.
    Balador, Ali
    et al.
    SICS Swedish ICT Västerås AB, Västerås, Sweden. & Polytechnic University of Valencia, Valencia, Spain.
    Böhm, Annette
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Calafate, Carlos T.
    Polytechnic University of Valencia, Valencia, Spain.
    Cano, Juan-Carlos
    Polytechnic University of Valencia, Valencia, Spain.
    A Reliable Token-Based MAC Protocol for V2V Communication in Urban VANET2016In: 2016 IEEE 27TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), Piscataway: IEEE , 2016, p. 1586-1591Conference paper (Refereed)
    Abstract [en]

    Safety applications developed for vehicular environments require every vehicle to periodically broadcast its status information (beacon) to all other vehicles, thereby avoiding the risk of car accidents in the road. Due to the high requirements on timing and reliability posed by traffic safety applications, the current IEEE 802.11p standard, which uses a random access Medium Access Control (MAC) protocol, faces difficulties to support timely and reliable data dissemination in vehicular environments where no acknowledgement or RTS/CTS (Request-to-Send/Clear-to-Send) mechanisms are adopted. In this paper, we propose the Dynamic Token-Based MAC (DTB-MAC) protocol. It implements a token passing approach on top of a random access MAC protocol to prevent channel contention as much as possible, thereby improving the reliability of safety message transmissions. Our proposed protocol selects one of the neighbouring nodes as the next transmitter; this selection accounts for the need to avoid beacon lifetime expiration. Therefore, it automatically offers retransmission opportunities to allow vehicles to successfully transmit their beacons before the next beacon is generated whenever time and bandwidth are available. Based on simulation experiments, we show that the DTB-MAC protocol can achieve better performance than IEEE 802.11p in terms of channel utilization and beacon delivery ratio for urban scenarios.

  • 18.
    Balasubramaniam, Sasitharan
    et al.
    Tampere University of Technology, Tampere, Finland .
    Lyamin, Nikita
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Kleyko, Denis
    Luleå University of Technology, Luleå, Sweden.
    Skurnik, Mikael
    University of Helsinki, Helsinki, Finland .
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Koucheryavy, Yevgeni
    Tampere University of Technology, Tampere, Finland .
    Exploiting bacterial properties for multi-hop nanonetworks2014In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 52, no 7, p. 184-191Article in journal (Refereed)
    Abstract [en]

    Molecular communication is a relatively new communication paradigm for nanomachines where the communication is realized by utilizing existing biological components found in nature. In recent years researchers have proposed using bacteria to realize molecular communication because the bacteria have the ability to swim and migrate between locations, carry DNA contents (i.e. plasmids) that could be utilized for information storage, and interact and transfer plasmids to other bacteria (one of these processes is known as bacterial conjugation). However, current proposals for bacterial nanonetworks have not considered the internal structures of the nanomachines that can facilitate the use of bacteria as an information carrier. This article presents the types and functionalities of nanomachines that can be utilized in bacterial nanonetworks. A particular focus is placed on the bacterial conjugation and its support for multihop communication between nanomachines. Simulations of the communication process have also been evaluated, to analyze the quantity of bits received as well as the delay performances. Wet lab experiments have also been conducted to validate the bacterial conjugation process. The article also discusses potential applications of bacterial nanonetworks for cancer monitoring and therapy. © 2014 IEEE.

  • 19.
    Balogh, Daniel
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Mohlin, Simon
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Teletrix2012Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Det trådbundna telefonnätet har blivit för dyrt att underhålla och utveckla. Därför håller Telia nu på att ta ner delar av det. För de abonnenter som berörs av detta har Telia en lösning som de kallar fast mobil. Istället för att abonnenterna ringer via det trådbundna nätet ringer de via GSM-nätet istället.Målet med detta examensarbete är att skapa en alternativ lösning till Telias. Vi börjar med att undersöka hur det analoga nätet fungerar. Därefter bygger vi ett eget analogt gränssnitt som kommunicerar med vanliga hemtelefoner. En mikroprocessor kommer att styra en GSM-modul och tolka signaler från det analoga gränssnittet.Resultatet av detta arbete är en apparatur som vi kallar Teletrix – en fast mobil. Med en Teletrix kan vanliga hemtelefoner ringa via GSM-nätet med god samtalskvalitet och med grundläggande funktioner som kopplingston och ringsignal.

  • 20.
    Belenko, Denis
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Noise measurements of a low power detector for RFID applications2012Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    In this work we provide measurements on low power envelope detector and compare them with results predicted by theory. This envelope detector is supposed to be used as a part of low power Wake-up radio for RFID applications. In the work we were mostly interested in noise parameters and blocker effect verification.

    The detector we use is based on CMOS transistors biased in subthreshold region. It gives us low power consumption and high sensitivity. For power consumption about 10 uA and signal to noise ratio equals to 10, the achieved sensitivity is 1.8 mV.

    The results of the work can be used to build low power envelope detector for specific requirements.

    Download full text (pdf)
    fulltext
  • 21.
    Bellalta, Boris
    et al.
    Universitat Pompeu Fabra, Barcelona, Spain.
    Barcelo, Jaume
    Universidad Carlos III, Madrid, Spain.
    Staehle, Dirk
    University of Wurzburg, Wurzburg, Germany.
    Vinel, Alexey
    Department of Communications Engineering, Tampere University of Technology, Tampere, Finland.
    Oliver, Miquel
    Universitat Pompeu Fabra, Barcelona, Spain.
    On the performance of packet aggregation in IEEE 802.11ac MU-MIMO WLANs2012In: IEEE Communications Letters, ISSN 1089-7798, E-ISSN 1558-2558, Vol. 16, no 10, p. 1588-1591Article in journal (Refereed)
    Abstract [en]

    Multi-user spatial multiplexing combined with packet aggregation can significantly increase the performance of Wireless Local Area Networks (WLANs). In this letter, we present and evaluate a simple technique to perform packet aggregation in IEEE 802.11ac MU-MIMO (Multi-user Multiple Input Multiple Output) WLANs. Results show that in non-saturation conditions both the number of active stations (STAs) and the queue size have a significant impact on the system performance. If the number of STAs is excessively high, the heterogeneity of destinations in the packets contained in the queue makes it difficult to take full advantage of packet aggregation. This effect can be alleviated by increasing the queue size, which increases the chances of scheduling a large number of packets at each transmission, hence improving the system throughput at the cost of a higher delay. © 1997-2012 IEEE.

    Download full text (pdf)
    fulltext
  • 22.
    Bellalta, Boris
    et al.
    Universitat Pompeu Fabra, Barcelona, Spain.
    Belyaev, Evgeny
    Tampere University of Technology, Finland.
    Jonsson, Magnus
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Performance evaluation of IEEE 802.11p-enabled vehicular video surveillance system2014In: IEEE Communications Letters, ISSN 1089-7798, E-ISSN 1558-2558, Vol. 18, no 4, p. 708-711Article in journal (Refereed)
    Abstract [en]

    Prospective IEEE 802.11p-based vehicular surveillance system, where video from the vehicle on-board camera is transmitted to the management center, is considered. Multi-hop transmission from the vehicle to the nearest roadside unit and then-via other roadside units-to the gateway is addressed. In this letter we assess the feasibility of such system by analyzing the video end-to-end distortion for a target vehicle, located several hops away from the gateway, when it is alone or there are also other vehicles transmitting video. We demonstrate the importance of dynamic adaptation of the video bit rate of each vehicle depending on the number and positions of the participating vehicles. © 2014 IEEE.

  • 23.
    Bellalta, Boris
    et al.
    Department of Information Technologies and Communications, Universitat Pompeu Fabra, Barcelona, Spain.
    Faridi, Azadeh
    Department of Information Technologies and Communications, Universitat Pompeu Fabra, Barcelona, Spain.
    Staehle, Dirk
    Department of Computer Science, University of Würzburg, Würzburg, Germany.
    Barcelo, Jaume
    Department of Information Technologies and Communications, Universitat Pompeu Fabra, Barcelona, Spain.
    Vinel, Alexey
    Department of Electronics and Communication Engineering, Tampere University of Technology, Tampere, Finland.
    Oliver, Miquel
    Department of Information Technologies and Communications, Universitat Pompeu Fabra, Barcelona, Spain.
    Performance analysis of CSMA/CA protocols with multi-packet transmission2013In: Computer Networks, ISSN 1389-1286, E-ISSN 1872-7069, Vol. 57, no 14, p. 2675-2688Article in journal (Refereed)
    Abstract [en]

    Wireless objects equipped with multiple antennas are able to simultaneously transmit multiple packets by exploiting the channel's spatial dimensions. In this paper, we study the benefits of such Multiple Packet Transmission (MPT) approach, when it is used in combination with a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol for fully interconnected networks, addressing the interactions between the two mechanisms and showing the performance gains that can be achieved. To this end, a very simple Media Access Control (MAC) protocol that captures the fundamental properties and tradeoffs of a CSMA/CA channel access protocol supporting MPT is introduced. Using this protocol as a reference, a new analytical model is presented for the case of non-saturated traffic sources with finite buffer space. Simulation results show that the analytical model is able to accurately characterize the steady-state behavior of the reference protocol for different number of antennas and different traffic loads, providing a useful tool for understanding the performance gains achieved by MAC protocols supporting MPT. © 2013 Elsevier B.V. All rights reserved.

  • 24.
    Bellalta, Boris
    et al.
    Universitat Pompeu Fabra, Barcelona, Spain.
    Zocca, Alessandro
    Eindhoven University of Technology, Eindhoven, The Netherlands.
    Cano, Cristina
    Hamilton Institute, Maynooth, Ireland.
    Checco, Alessandro
    Hamilton Institute, Maynooth, Ireland.
    Barcelo, Jaume
    Universitat Pompeu Fabra, Barcelona, Spain.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Throughput Analysis in CSMA/CA Networks Using Continuous Time Markov Networks: A Tutorial2014In: Wireless Networking for Moving Objects / [ed] Ivan Ganchev, Marília Curado, Andreas Kassler, Cham: Springer, 2014, p. 115-133Chapter in book (Refereed)
    Abstract [en]

    This book chapter introduces the use of Continuous Time Markov Networks (CTMN) to analytically capture the operation of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) networks. It is of tutorial nature, and it aims to be an introduction on this topic, providing a clear and easy-to-follow description. To illustrate how CTMN can be used, we introduce a set of representative and cutting-edge scenarios, such as Vehicular Ad-hoc Networks (VANETs), Power Line Communication networks and multiple overlapping Wireless Local Area Networks (WLANs). For each scenario, we describe the specific CTMN, obtain its stationary distribution and compute the throughput achieved by each node in the network. Taking the per-node throughput as reference, we discuss how the complex interactions between nodes using CSMA/CA have an impact on system performance.

  • 25.
    Belyaev, Evgeny
    et al.
    Tampere University of Technology, Tampere, Finland.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Poster: Target Packet Loss Selection for Inter-Packet Loss Protection for Video Streaming Over VANETs2014In: 2014 IEEE Vehicular Networking Conference (VNC) / [ed] Falko Dressler, Onur Altintas, Suman Banerjee, Björn Scheuermann & David Eckhoff, Piscataway, N.J.: IEEE Press, 2014, p. 197-198Conference paper (Refereed)
    Abstract [en]

    This work is dedicated to a live video streaming in vehicular networks where the application-based inter-packet forward error correction is used for the packet loss protection. A practical way to apply such a protection at the video encoder side for the unknown channel loss rate is proposed. Experimental results which demonstrate the performance for the proposed approach for a scalable extension of the H.264/AVC standard (H.264/SVC) and for the non-standardized video codec based on three-dimensional discrete wavelet transform (3-D DWT) are provided.

  • 26.
    Belyaev, Evgeny
    et al.
    Tampere University of Technology, Tampere, Finland .
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Tampere University of Technology, Tampere, Finland.
    Egiazarian, Karen
    Tampere University of Technology, Tampere, Finland.
    Koucheryavy, Yevgeni
    Tampere University of Technology, Tampere, Finland.
    Power Control in See-Through Overtaking Assistance System2013In: IEEE Communications Letters, ISSN 1089-7798, E-ISSN 1558-2558, Vol. 17, no 3, p. 612-615, article id 6423758Article in journal (Refereed)
    Abstract [en]

    In recently proposed cooperative overtaking assistance systems a video stream captured by a windshield-mounted camera in a vehicle is compressed and broadcast to the vehicle driving behind it, where it is displayed to the driver. It has been shown that this system can provide robust operation if video codec channel adaptation is undertaken by exploiting information from the cooperative awareness messages about any forthcoming increases in the multiple access channel load. In this letter we demonstrate the gains achievable in system performance when the video transmitter power control is also used. © 1997-2012 IEEE.

  • 27.
    Belyaev, Evgeny
    et al.
    Tampere University of Technology, Tempere, Finland.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Jonsson, Magnus
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Sjöberg, Katrin
    Volvo GTT, Göteborg, Sweden.
    Live video streaming in IEEE 802.11p vehicular networks: Demonstration of an automotive surveillance application2014In: Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, Piscataway, United States: IEEE Press, 2014, p. 131-132Conference paper (Refereed)
    Abstract [en]

    Prospective IEEE 802.11p-enabled automotive video applications are identified. Preliminary experimental results of inter-vehicular live video streaming for surveillance applications are presented. A test-bed for the demonstration of the achievable visual quality under different channel conditions is described.

  • 28.
    Belyaev, Evgeny
    et al.
    Tampere University of Technology, Tampere, Finland.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Surak, Adam
    Tampere University of Technology, Tampere, Finland.
    Gabbouj, Moncef
    Tampere University of Technology, Tampere, Finland.
    Jonsson, Magnus
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Egiazarian, Karen
    Tampere University of Technology, Tampere, Finland.
    Robust vehicle-to-infrastructure video transmission for road surveillance applications2015In: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, Vol. 64, no 7, p. 2991-3003Article in journal (Refereed)
    Abstract [en]

    IEEE 802.11p vehicle-to-vehicle and vehicle-to-infrastructure communication technology is currently an emerging research topic in both industry and academia. Respective spectrum allocation of 10 MHz channels in the 5.9 GHz band for USA and Europe allows considering inter-vehicle transmission of a live video information as a basis, which enables a new class of safety and infotainment automotive applications such as road video surveillance. This paper is first of its kind where such a video transmission system is developed and experimentally validated. We propose a low-complexity unequal packet loss protection and rate control algorithms for a scalable video coding based on the three-dimensional discrete wavelet transform. We show that in comparison with a scalable extension of the H.264/AVC standard the new codec is less sensitive to packet losses, has less computational complexity and provides comparable performance in case of unequal packet loss protection. It is specially designed to cope with severe channel fading typical for dynamic vehicular environments and has a low complexity, making it a feasible solution for real-time automotive surveillance applications. Extensive measurements obtained in realistic city traffic scenarios demonstrate that good visual quality and continuous playback is possible when the moving vehicle is in the radius of 600 meters from the roadside unit. ©2014 IEEE

  • 29.
    Bengtsson, Henrik
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Uhlemann, Elisabeth
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Wiberg, Per-Arne
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Protocol for wireless real-time systems1999In: Proceedings of the 11th Euromicro Conference on Real-Time Systems, 1999, Los Alamitos, CA: IEEE Computer Society , 1999, p. 168-174, article id 777463Conference paper (Refereed)
    Abstract [en]

    A protocol and a communication mechanism intended for time and safety critical applications using a radio channel for information transport are considered jointly. The protocol is based on a scheme of retransmissions done on demand within a given time window. Each retransmission is coded with a varying number of redundant symbols. The set of blocks used for retransmission is controlled by two quality-of-service parameters: deadline for the transmission and the probability that the correct decoded message will reach the recipient before this deadline. Analysis of a protocol model indicates that it is possible to transmit time critical information in a mobile wireless system with very low error probabilities in an industrial environment.

    Download full text (pdf)
    FULLTEXT01
  • 30.
    Bengtsson, Lars
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Nilsson, Kenneth
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Svensson, Bertil
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Chalmers University of Technology, Gothenburg, Sweden.
    A high-performance embedded massively parallel processing system1994In: Proceedings of the First International Conference on Massively Parallel Computing Systems (MPCS) The Challenges of General-Purpose and Special-Purpose Computing, Piscataway, N.J.: IEEE, 1994, p. 201-206Conference paper (Refereed)
    Abstract [en]

    A need to apply the massively parallel computing paradigm in embedded real-time systems is foreseen. Such applications put new demands on massively parallel systems, different from those of general purpose computing. For example, time determinism is more important than maximal throughput, physical distribution is often required, size, power, and I/O are important, and interactive development tools are needed. The paper describes an architecture for high-performance, embedded, massively parallel processing, featuring a large number of nodes physically distributed over a large area. A typical node has thousands of processing elements (PEs) organized in SIMD mode and is the size of the palm of a hand, Intermodule communication over a scalable optical network is described. A combination of wavelength division multiplexing (WDM) and time division multiplexing (TDM) is used. © 1994 IEEE.

  • 31.
    Berbineau, Marion
    et al.
    IFSTTAR, Villeneuve d’Ascq, France.
    Jonsson, MagnusHalmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).Bonnin, Jean-MarieTelecom Bretagne, Cesson Sévigné, France.Cherkaoui, SoumayaUniversité de Sherbrooke, Canada.Aguado, MarinaUniversity of the Basque Country, Bilbao, Spain.Rico Garcia, CristinaDLR, German Aerospace Center, Oberpfaffenhofen-Wessling, Germany.Ghannoum, HassanSNCF, Paris, France.Mehmood, RashidUniversity of Huddersfield, UK.Vinel, AlexeyTampere University of Technology, Finland.
    Communication Technologies for Vehicles: 5th International Workshop, Nets4Cars/Nets4Trains 2013, Villeneuve d' Ascq, France, May 14-15, 2013, Proceedings2013Conference proceedings (editor) (Refereed)
  • 32.
    Bergholm, Johan
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Gallardo, Sascha
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Svensson, Jonny
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE).
    Positionering och Spårning av mobila enheter, ur ett IT–forensiskt perspektiv2013Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    I dagens Sverige så har de mobila enheterna en självklar plats i våra fickor, likväl som i vårt samhälle och i dess brottslighet, vilket gör att det sedan några år är att anse självklart att de även har en central roll i IT–forensiska utredningar inom våra polismyndigheter. Men vid sidan av konkreta bevis för begångna brott lagrar enheterna dessutom ofta data som kan användas för att spåra enheten, och därmed också dess brukare, över tid, vilket givetvis är av intresse av polismyndigheter men skulle även kunna vara av stort intresse för exempelvis försäkringsbolag och andra delar av den 'civila sektorn' som driver utredningar men som saknar polisens befogenheter. För att ge ett så brett användningsområde som möjligt fokuserar därför rapporten inte bara på datat som är tillgängligt från den faktiska enheten och hur de kan användas för spårning och positionering, utan försöker även på praktiskt väg undersöka i vilken grad dessa metoder kan utföras med allmänt tillgänglig mjuk- och hårdvara.

    Download full text (pdf)
    fulltext
  • 33.
    Bilstrup, Katrin
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Böhm, Annette
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Lidström, Kristoffer
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Jonsson, Magnus
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Uhlemann, Elisabeth
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Report on the Collaboration between CVIS and CERES in the Project Vehicle Alert System (VAS)2009Report (Other academic)
    Abstract [en]

    In March 2007, an agreement was made for interchange of experiences between CVIS and the Centre for Research on Embedded Systems (CERES) at Halmstad University in Sweden. The majority of the work relating to this collaboration has been conducted within the CERES project Vehicle Alert System (VAS), aiming to use vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to provide different types of warning messages. The main focus of the VAS project is on communication and in particular the lower layers of the communication stack are investigated. VAS involves academic researchers from Halmstad University as well as researchers from Volvo Technology, SP Technical Research Institute of Sweden and the company Free2move. This report presents the results of the VAS project, its publications, and other issues of interest both to the CVIS consortium as well as a broader scope.

    Download full text (pdf)
    FULLTEXT01
  • 34.
    Bilstrup, Katrin
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Uhlemann, Elisabeth
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Ström, Erik G.
    Chalmers.
    Medium access control in vehicular networks based on the upcoming IEEE 802.11p standard2008In: World Congress on Intelligent Transport Systems (ITS), 2008, World Congress on ITS , 2008, p. 12-Conference paper (Refereed)
    Abstract [en]

    In this paper, initial simulations are presented showing that the upcoming IEEE 802.11p standard is not suitable for traffic safety applications requiring reliable, low delay communication between vehicles. The medium access control procedure is one of the most important parts in the design of delay-constrained communication systems, and emerging vehicle safety applications put new stringent demands on timely and reliable delivery of data packets. The medium access procedure used in 802.11p is carrier sense multiple access, which is inherently unsuitable for time-critical data traffic since it is contention-based and cannot provide a finite upper bound on the time to channel access. The simulation results indicate that with IEEE 802.11p, channel access cannot be granted in a manner that is sufficiently predictable to support reliable, low-delay communications between vehicles on a highway.

    Download full text (pdf)
    FULLTEXT01
  • 35.
    Bilstrup, Katrin
    et al.
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Uhlemann, Elisabeth
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Ström, Erik G.
    Chalmers.
    Bilstrup, Urban
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication2008In: 68th IEEE Vehicular Technology Conference, 2008. VTC 2008-Fall: IEEE Vehicular Technology Conference (VTC) (2008), Piscataway, N.J.: IEEE Press, 2008, p. 1-5Conference paper (Refereed)
    Abstract [en]

    In this paper the medium access control (MAC) method of the upcoming vehicular communication standard IEEE 802.11p has been simulated in a highway scenario with periodic broadcast of time-critical packets (so-called heartbeat messages) in a vehicle-to-vehicle situation. The 802.11p MAC method is based on carrier sense multiple access (CSMA) where nodes listen to the wireless channel before sending. If the channel is busy, the node must defer its access and during high utilization periods this could lead to unbounded delays. This well-known property of CSMA is undesirable for time critical communications. The simulation results reveal that a specific node/vehicle is forced to drop over 80% of its heartbeat messages because no channel access was possible before the next message was generated. To overcome this problem, we propose to use self-organizing time division multiple access (STDMA) for real-time data traffic between vehicles. This MAC method is already successfully applied in commercial surveillance applications for ships (AIS) and airplanes (VDL mode 4). Our initial results indicate that STDMA outperforms CSMA for time-critical traffic safety applications in ad hoc vehicular networks.

    Download full text (pdf)
    FULLTEXT01
  • 36.
    Bilstrup, Katrin
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Uhlemann, Elisabeth
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Ström, Erik G.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Bilstrup, Urban
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    On the ability of the 802.11p MAC method and STDMA to support real-time vehicle-to-vehicle communications2009In: EURASIP Journal on Wireless Communications and Networking, ISSN 1687-1472, E-ISSN 1687-1499, Vol. 2009, no 902414, p. 1-14Article in journal (Refereed)
    Abstract [en]

    Traffic safety applications using vehicle-to-vehicle (V2V) communication is an emerging and promising area within the intelligent transportation systems (ITS) sphere. Many of these new applications require real-time communication with high reliability, meaning that packets must be successfully delivered before a certain deadline. Applications with early deadlines are expected to require direct V2V communications, and the only standard currently supporting this is the upcoming IEEE 802.11p, included in the wireless access in vehicular environment (WAVE) stack. To meet a real-time deadline, timely and predictable access to the channel is paramount. However, the medium access method used in 802.11p, carrier sense multiple access with collision avoidance (CSMA/CA), does not guarantee channel access before a finite deadline. In this paper, we analyze the communication requirements introduced by traffic safety applications, namely, low delay, reliable, real-time communications.We show by simulation of a simple, but realistic, highway scenario, that vehicles using CSMA/CA can experience unacceptable channel access delays and, therefore, 802.11p does not support real-time communications. In addition, we present a potential remedy for this problem, namely, the use of self-organizing time division multiple access (STDMA). The real-time properties of STDMA are investigated by means of the same highway simulation scenario, with promising results.

    Download full text (pdf)
    FULLTEXT01
  • 37.
    Bilstrup, Katrin
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Uhlemann, Elisabeth
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Ström, Erik G.
    Chalmers, Gothenburg, Sweden.
    Bilstrup, Urban
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    On the ability of the IEEE 802.11p and STDMA to provide predictable channel access2009In: Proceedings of the 16th World Congress on Intelligent Transport Systems (ITS), 2009Conference paper (Refereed)
    Abstract [en]

    Emerging traffic safety applications requiring low delay communications will need vehicle ad-hoc networks. The only communication standard currently supporting this is IEEE 802.11p. However, 802.11p uses the medium access method CSMA/CA, which has a major drawback: unbounded worst case channel access delay. We therefore propose an algorithm already in commercial use in the shipping industry: STDMA. With STDMA, nodes always get predictable channel access regardless of the number of competing nodes and the maximum delay is deterministic. In this paper we elaborated with different parameter settings for the two protocols with the aim of improving performance without altering the standards.

     

    Download full text (pdf)
    FULLTEXT01
  • 38.
    Bilstrup, Urban
    Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Bluetooth and Wireless Multihop Networks in Industrial Communication Systems2008Doctoral thesis, monograph (Other academic)
    Abstract [en]

    The objective of this thesis is to investigate the use of short-range wireless communication technology in industrial communication systems where there is a need for guaranteed timely delivery of correct information. Methods for achieving such capability are developed in the context of the physical layer, the data link layer and the application layer. Based on the insight that it is impossible to achieve strict determinism in a wireless communication system, a probabilistic definition of hard real-time systems is suggested, and thus a guarantee is given in the form of the probability of fulfilling a certain goal. Since a wireless channel is time variant, it is also necessary to continuously keep track of available resources. Allocation and link management methods for wireless communication systems therefore need to be dynamic and of an online character. An exhaustive resource allocation method with redundancy is first proposed for single message delivery and then extended for the operation of a single Bluetooth piconet. However, many devices in an industrial automation system have limited computational resources, especially if wireless sensors/actuators powered by battery or wireless power are considered. This implies that methods used for resource allocation must be of low computational complexity. The complexity issue becomes evident when large systems are implemented, even if each individual sensor generates small amounts of data. The upstream and downstream flows of data grow rapidly in a hierarchical system with many sub-systems, sensors and actuators. It is empirically shown that the aggregated data flow in a monitoring system requires powerful communication nodes already at low levels in the industrial communication hierarchy. A predictable system requires that representative entities for the available resources are defined. In a communication system with a single broadcast domain, such as a single Bluetooth piconet, the resource space is often limited to the time domain. When a multihop wireless network with multiple broadcast domains is considered, the spatial domain is added as an available resource and, if a multi-channel radio transceiver is used, the frequency is also added as an available resource domain. These three domains represent the physical resource space that is available for a wireless multihop network. These are subject to trade-off in all of the three lowest protocol layers, and one of the most challenging problems in the design of a wireless multihop network is how to achieve efficient sharing of these resources. This problem is addressed by proposing a clustered architecture based on a dual-radio node that enables dynamic use of these resource domains.

  • 39.
    Bocharova, Irina
    et al.
    St.-Petersburg University of Information Technologies, Mechanics and Optics, St.-Petersburg, Russia & University of Tartu, Tartu, Estonia.
    Kudryashov, Boris
    St.-Petersburg University of Information Technologies, Mechanics and Optics, St.-Petersburg, Russia & University of Tartu, Tartu, Estonia.
    Lyamin, Nikita
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Frick, Erik
    AstaZero Hällered, Sandhult, Sweden.
    Rabi, Maben
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Department of Electrical Engineering, Western Norway University of Applied Sciences, Bergen, Norway.
    Low Delay Inter-Packet Coding in Vehicular Networks2019In: Future Internet, E-ISSN 1999-5903, Vol. 11, no 12, article id 212Article in journal (Refereed)
    Abstract [en]

    In Cooperative Intelligent Transportation Systems (C-ITSs), vehicles need to wirelessly connect with Roadside units (RSUs) over limited durations when such point-to-point connections are possible. One example of such communications is the downloading of maps to the C-ITS vehicles. Another example occurs in the testing of C-ITS vehicles, where the tested vehicles upload trajectory records to the roadside units. Because of real-time requirements, and limited bandwidths, data are sent as User Datagram Protocol (UDP) packets. We propose an inter-packet error control coding scheme that improves the recovery of data when some of these packets are lost; we argue that the coding scheme has to be one of convolutional coding. We measure performance through the session averaged probability of successfully delivering groups of packets. We analyze two classes of convolution codes and propose a low-complexity decoding procedure suitable for network applications. We conclude that Reed–Solomon convolutional codes perform better than Wyner–Ash codes at the cost of higher complexity. We show this by simulation on the memoryless binary erasure channel (BEC) and channels with memory, and through simulations of the IEEE 802.11p DSRC/ITS-G5 network at the C-ITS test track AstaZero.

  • 40.
    Bocharova, Irina
    et al.
    Department of Information Systems, St. Petersburg University of Information Technologies, Mechanics and Optics, St.-Petersburg, Russia & Institute of Computer Science, University of Tartu, Estonia.
    Kudryashov, Boris
    Department of Information Systems, St. Petersburg University of Information Technologies, Mechanics and Optics, St.-Petersburg, Russia & Institute of Computer Science, University of Tartu, Estonia.
    Rabi, Maben
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS).
    Lyamin, Nikita
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Dankers, Wouter
    Volvo GTT, Goteborg, Sweden.
    Frick, Erik
    AstaZero, Hällered, Sandhult, Sweden.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Department of Electrical Engineering, Western Norway University of Applied Sciences, Bergen, Norway.
    Characterizing Packet Losses in Vehicular Networks2019In: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, Vol. 68, no 9, p. 8347-8358Article in journal (Refereed)
    Abstract [en]

    To enable testing and performance evaluation of new connected and autonomous driving functions, it is important to characterize packet losses caused by degradation in vehicular (V2X) communication channels. In this paper we suggest an approach to constructing packet loss models based on the socalled Pseudo-Markov chains (PMC). The PMC based model needs only short training sequences, has low computational complexity, and yet provides more precise approximations than known techniques. We show how to learn PMC models from either empirical records of packet receptions, or from analytical models of fluctuations in the received signal strength. In particular, we validate our approach by applying it on (i) V2X packet reception data collected from an active safety test run, which used the LTE network of the AstaZero automotive testing site in Sweden, and (ii) variants of the Rician fading channel models corresponding to two models of correlations of packet losses. We also show that initializing the Baum-Welch algorithm with a second order PMC model leads to a high accuracy model. © 2019 IEEE.

  • 41.
    Boeira, Felipe
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS). Federal University of Rio Grande do Sul, Porto Alegre, Brazil & Linköping University, Linköping, Sweden.
    Barcellos, Marinho P.
    Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
    Pignaton de Freitas, Edison
    Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Asplund, Mikael
    Linköping University, Linköping, Sweden.
    Effects of Colluding Sybil Nodes in Message Falsification Attacks for Vehicular Platooning2017In: 2017 IEEE Vehicular Networking Conference (VNC) / [ed] Onur Altintas, Claudio Casetti, Nicholas Kirsch, Renato Lo Cigno & Rui Meireles, 2017Conference paper (Refereed)
    Abstract [en]

    This paper studies the impact of vulnerabilities associated with the Sybil attack (through falsification of multiple identities) and message falsification in vehicular platooning. Platooning employs Inter-Vehicular Communication (IVC) to control a group of vehicles. It uses broadcast information such as acceleration, position, and velocity to operate a longitudinal control law. Cooperation among vehicles allows platoons to reduce fuel consumption and risks associated with driver mistakes. In spite of these benefits, the use of network communication to control vehicles exposes a relevant attack surface that can be exploited by malicious actors. To carry out this study, we evaluate five scenarios to quantify the potential impact of such attacks, identifying how platoons behave under varying Sybil attack conditions and what are the associated safety risks. This research also presents the use of location hijacking attack. In this attack, innocent vehicles that are not part of a platoon are used as a way to create trust bond between the false identities and the physical vehicles. We demonstrate that the ability to create false identities increases the effectiveness of message falsification attacks by making them easier to deploy and harder to detect in time.

  • 42.
    Boeira, Felipe
    et al.
    Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
    Barcellos, Marinho
    Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
    Pignaton de Freitas, Edison
    Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Asplund, Mikael
    Linköping University, Linköping, Sweden.
    On the impact of sybil attacks in cooperative driving scenarios2017In: 2017 IFIP Networking Conference (IFIP Networking) and Workshops, IEEE, 2017Conference paper (Refereed)
    Abstract [en]

    Platooning employs a set of technologies to manage how a group of vehicles operates, including radar, GPS and Inter-Vehicular Communication (IVC). It uses broadcasted information such as acceleration, position and velocity to operate vehicle members of the platoon. Cooperation among vehicles allows platoons to reduce fuel consumption and risks associated with driver mistakes. In spite of these benefits, the use of IVC to control vehicles exposes a relevant attack surface that can be exploited by malicious actors. In this paper we study the impact of vulnerabilities associated with the Sybil attack (through falsification of multiple identities) and message falsification in vehicular platooning. Simulation results show that this attack may impact the longitudinal control and compromise the entire platoon control. © Copyright 2018 IEEE

  • 43.
    Böhm, Annette
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Jonsson, Magnus
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    Kunert, Kristina
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Embedded Systems (CERES).
    AWG-based Optoelectronic Router with QoS Support2005In: 2005 International Conference on Wireless and Optical Communications Networks: March 6 - 8, 2005, Dubai, United Arab Emirates, Piscataway, NJ: IEEE Press, 2005, p. 23-28Conference paper (Refereed)
    Abstract [en]

    We present a router architecture with electronic queuing and a passive optical multi-channel network, which is based upon a single-hop star topology with an arrayed waveguide grating (AWG) at its center. The AWG's property of spatial wavelength reuse and both fixed-tuned and tunable transceivers enable simultaneous control and data transmission. Our proposed medium access control protocol supports traffic differentiation and utilizes EOF (earliest deadline first) to schedule the traffic from input ports to output ports on the router. Our simulations show that the router treats QoS (quality of service) traffic well.

    Download full text (pdf)
    FULLTEXT01
  • 44.
    Böhm, Annette
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Jonsson, Magnus
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Kunert, Kristina
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Context-Aware Retransmission Scheme for Increased Reliability in Platooning Applications2014In: Communication Technologies for Vehicles: 6th International Workshop, Nets4Cars/Nets4Trains/Nets4Aircraft 2014, Offenburg, Germany, May 6-7, 2014. Proceedings, Cham: Springer, 2014, p. 30-42Conference paper (Refereed)
    Abstract [en]

    Recent advances in cooperative driving hold the potential to significantly improve safety, comfort and efficiency on our roads. An application of particular interest is platooning of vehicles, where reduced inter-vehicle gaps lead to considerable reductions in fuel consumption. This, however, puts high requirements on timeliness and reliability of the underlying exchange of control data. Considering the difficult radio environment and potentially long distances between communicating platoon members, as well as the random channel access method used by the IEEE 802.11p standard for short-range inter-vehicle communication, those requirements are very difficult to meet. The relatively static topology of a platoon, however, enables us to preschedule communication within the platoon over a dedicated service channel. Furthermore, we are able to set aside parts of the available bandwidth for retransmission of packets in order to fulfil the reliability requirements stated by the platoon control application. In this paper, we describe the platooning framework along with the scheduling algorithm used to assign retransmission slots to control packets that are most likely to need them. This retransmission scheduling scheme offers a valuable tool for system designers when answering questions about the number of safely supported vehicles in a platoon, achievable reductions in inter-vehicle gaps and periodicity of control packets. © 2014 Springer International Publishing.

  • 45.
    Böhm, Annette
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Kunert, Kristina
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Data age based MAC scheme for fast and reliable communication within and between platoons of vehicles2016In: International Conference on Wireless and Mobile Computing, Networking and Communications, Piscataway: IEEE, 2016Conference paper (Refereed)
    Abstract [en]

    Heavy vehicles driving as platoon with highly reduced inter-vehicle gaps has shown considerable fuel saving potential, but put high timing and reliability requirements on the underlying control data exchange. The recently standardized IEEE 802.11p protocol suite for Vehicular Ad-Hoc Networks (VANETs) and its message types do neither support the demands of a platooning application nor take advantage of its properties. We therefore propose a framework for centralized channel access with retransmission capabilities for safety critical control data exchange based on the data age of earlier received messages, DA-RE (Data Age based REtransmission scheme). A simulation comparison to the 802.11p random access Medium Access Control (MAC) protocol shows that the intelligent assignment of retransmission opportunities considerably improves the reliability of platooning control data. We also propose a power control based scheme for early platoon detection allowing several platoons to temporarily share a channel and show that the safe and reliable operation of their vehicles is not compromised. © 2016 IEEE.

  • 46.
    Böhm, Annette
    et al.
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Lidström, Kristoffer
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Jonsson, Magnus
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Larsson, Tony
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Evaluating CALM M5-based vehicle-to-vehicle communication in various road settings through field trials2010In: Proceedings - Conference on Local Computer Networks, LCN, (2010 12 01): 613-620, Piscataway, N.J.: IEEE Press, 2010, p. 613-620Conference paper (Refereed)
    Abstract [en]

    Future cooperative Intelligent Transport Systems (ITS) applications aimed to improve safety, efficiency and comfort on our roads put high demands on the underlying wireless communication system. To gain better understanding of the limitations of the 5.9 GHz frequency band and the set of communication protocols for medium range vehicle to vehicle (V2V) communication, a set of field trials with CALM M5 enabled prototypes has been conducted. This paper describes five different real vehicle traffic scenarios covering both urban and rural settings at varying vehicle speeds and under varying line-of-sight (LOS) conditions and discusses the connectivity (measured as Packet Reception Ratio) that could be achieved between the two test vehicles. Our measurements indicate a quite problematic LOS sensitivity that strongly influences the performance of V2V-based applications. We further discuss how the awareness of these context-based connectivity problems can be used to improve the design of possible future cooperative ITS safety applications.

  • 47.
    Campolo, Claudia
    et al.
    Mediterranea University of Reggio Calabria, Reggio Calabria, Italy.
    Molinaro, Antonella
    Mediterranea University of Reggio Calabria, Reggio Calabria, Italy.
    Berthet, Antoine O.
    Gif-sur-Yvette, CNRS-Centrale Supélec-Université Paris Sud, Gif-sur-Yvette, France.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Full-Duplex Radios for Vehicular Communications2017In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 55, no 6, p. 182-189Article in journal (Refereed)
    Abstract [en]

    Recent significant advances in self-interference cancellation techniques pave the way for the deployment of full-duplex wireless transceivers capable of concurrent transmission and reception on the same channel. Despite the promise to theoretically double the spectrum efficiency, full-duplex prototyping in off-the-shelf chips of mobile devices is still in its infancy, mainly because of the challenges in mitigating self-interference to a tolerable level and the strict hardware constraints. In this article, we argue in favor of embedding full-duplex radios in onboard units of future vehicles. Unlike the majority of mobile devices, vehicular onboard units are good candidates to host complex FD transceivers because of their virtually unlimited power supply and processing capacity. Taking into account the effect of imperfect SI cancellation, we investigate the design implications of full-duplex devices at the higher-layer protocols of next-generation vehicular networks and highlight the benefits they could bring with respect to half-duplex devices in some representative use cases. Early results are also provided that give insight into the impact of self-interference cancellation on vehicle-to-roadside communications, and showcase the benefits of FD-enhanced medium access control protocols for vehicle-to-vehicle communications supporting crucial road safety applications.

  • 48.
    Campolo, Claudia
    et al.
    DIIES Department, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy.
    Molinaro, Antonella
    DIIES Department, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy, & CentraleSupélec/L2S, Université Paris-Saclay, Paris, France.
    Berthet, Antoine
    CentraleSupélec/L2S, Université Paris-Saclay, Paris, France.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). Department of Electrical Engineering, Western Norway University of Applied Sciences, Bergen, Norway.
    On Latency and Reliability of Road Hazard Warnings over the Cellular V2X Sidelink Interface2019In: IEEE Communications Letters, ISSN 1089-7798, E-ISSN 1558-2558, Vol. 23, no 11, p. 2135-2138Article in journal (Refereed)
    Abstract [en]

    Decentralized Environmental Notification Messages (DENMs) are generated by a vehicle upon detection of an accident or other hazards on the road, and need to be promptly and reliably transmitted. Delayed or lost messages may have fatal consequences, especially in critical driving situations, such as automated overtake and emergency braking, when vehicles can be very close to each other. In this letter, the DENM latency and reliability performances are characterized over the Cellular Vehicle-to-everything (C-V2X) sidelink (PC5 interface). The conducted study uses analytical tools, among which stochastic geometry, to derive performance results, then validated by simulations. Results are applied to the case of DENMs for emergency electronic brake lights, and helpful insights are provided for this crucial case and for other more general DENM-assisted V2X use cases.

  • 49.
    Campolo, Claudia
    et al.
    Dipartimento di Informatica, Matematica, Elettronica e Trasporti, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy.
    Molinaro, Antonella
    Dipartimento di Informatica, Matematica, Elettronica e Trasporti, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    To switch or not to switch: Service discovery and provisioning in multi-radio V2R communications2016In: Proceedings of 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM) / [ed] Magnus Jonsson, Jacek Rak, Arun Somani, Dimitri Papadimitriou & Alexey Vinel, Piscataway: IEEE Press, 2016, p. 281-287, article id 7608299Conference paper (Refereed)
    Abstract [en]

    A rich portfolio of services (e.g., road traffic information, maps download, Internet/cloud access) will be delivered to users on wheels through Vehicular Ad Hoc Networks (VANETs).Most of them will be offered by road-side units (RSUs) sparsely deployed along the roads. The prompt access to such services by passing by vehicles highly relies on the efficiency of service announcement procedures performed by the RSUs. In this paper, we present an analytical framework that models the service discovery and access mechanisms in multi-channel vehicular networks. The model accounts for dual-radio devices under different channel configurations for the delivery of announcements (e.g., on the control channel, on a service channel) and related switching mechanisms. Guidelines are suggested for the setting of service announcements parameters and channel configuration to allow providers to boost service provisioning. © 2016 IEEE.

  • 50.
    Campolo, Claudia
    et al.
    Mediterranea University of Reggio Calabria, Reggio Calabria, Italy.
    Molinaro, Antonella
    Mediterranea University of Reggio Calabria, Reggio Calabria, Italy.
    Vinel, Alexey
    Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
    Understanding Adjacent Channel Interference in Multi-Channel VANETs2014In: 2014 IEEE Vehicular Networking Conference (VNC) / [ed] Falko Dressler, Onur Altintas, Suman Banerjee, Björn Scheuermann & David Eckhoff, Piscataway, NJ: IEEE Press, 2014, p. 101-104, article id 7013316Conference paper (Refereed)
    Abstract [en]

    Multiple channels have been allocated in the 5 GHz spectrum for vehicular communications worldwide, however, due to the limited allocated bandwidth, simultaneous communications occurring over nearby channels may be affected by adjacent channel interference (ACI). Due to ACI, packet reception may be unsuccessful and transmissions may be delayed. In this work, we investigate the ACI phenomena in multichannel vehicular networks to shed light on their effects, with focus on the transmitter-side. To this purpose, a simple analytical model is introduced along with a preliminary evaluation. Suggestions are also provided about the usage of adjacent channels so to minimize side effects on the communication quality. © 2014 IEEE

12345 1 - 50 of 237
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf