hh.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aramrattana, Maytheewat
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES). The Swedish National Road and Transport Research Institute (VTI), Göteborg, Sweden.
    A Simulation-Based Safety Analysis of CACC-Enabled Highway Platooning2018Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Cooperative Intelligent Transport Systems (C-ITS) enable actors in the transport systems to interact and collaborate by exchanging information via wireless communication networks. There are several challenges to overcome before they can be implemented and deployed on public roads. Among the most important challenges are testing and evaluation in order to ensure the safety of C-ITS applications.

    This thesis focuses on testing and evaluation of C-ITS applications with regard to their safety using simulation. The main focus is on one C-ITS application, namely platooning, that is enabled by the Cooperative Adaptive Cruise Control (CACC) function. Therefore, this thesis considers two main topics: i) what should be modelled and simulated for testing and evaluation of C-ITS applications? and ii) how should CACC functions be evaluated in order to ensure safety?

    When C-ITS applications are deployed, we can expect traffic situations which consist of vehicles with different capabilities, in terms of automation and connectivity. We propose that involving human drivers in testing and evaluation is important in such mixed traffic situations. Considering important aspects of C-ITS including human drivers, we propose a simulation framework, which combines driving-, network-, and traffic simulators. The simulation framework has been validated by demonstrating several use cases in the scope of platooning. In particular, it is used to demonstrate and analyse the safety of platooning applications in cut-in situations, where a vehicle driven by a human driver cuts in between vehicles in platoon. To assess the situations, time-to-collision (TTC) and its extensions are used as safety indicators in the analyses.

    The simulation framework permits future C-ITS research in other fields such as human factors by involving human drivers in a C-ITS context. Results from the safety analyses show that cut-in situations are not always hazardous, and two factors that are the most highly correlated to the collisions are relative speed and distance between vehicles at the moment of cutting in. Moreover, we suggest that to solely rely on CACC functions is not sufficient to handle cut-in situations. Therefore, guidelines and standards are required to address these situations properly.

  • 2.
    Aramrattana, Maytheewat
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES). The Swedish National Road and Transport Research Institute (VTI), Göteborg, Sweden.
    Englund, Cristofer
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). RISE Viktoria, Göteborg, Sweden.
    Larsson, Tony
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES).
    Jansson, Jonas
    The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
    Nåbo, Arne
    The Swedish National Road and Transport Research Institute (VTI), Göteborg, Sweden.
    Safety Evaluation of Highway Platooning Under a Cut-In Situation Using Simulation2018Ingår i: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Platooning refers to an application, where a group of connected and automated vehicles follow a lead vehicle autonomously, with short inter-vehicular distances. At merging points on highways such as on-ramp, platoons could encounter manually driven vehicles, which are merging on to the highways. In some situations, the manually driven vehicles could end up between the platooning vehicles. Such situations are expected and known as “cut-in” situations. This paper presents a simulation study of a cut-in situation, where a platoon of five vehicles encounter a manually driven vehicle at a merging point of a highway. The manually driven vehicle is driven by 37 test persons using a driving simulator. For the platooning vehicles, two longitudinal controllers with four gap settings between the platooning vehicles, i.e. 15 meters, 22.5 meters, 30 meters, and 42.5 meters, are evaluated. Results summarizing cut-in behaviours and how the participants perceived the situation are presented. Furthermore, the situation is assessed using safety indicators based on time-to-collision.

  • 3.
    Aramrattana, Maytheewat
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES). The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
    Larsson, Tony
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Centrum för forskning om inbyggda system (CERES).
    Englund, Cristofer
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). RISE Viktoria, Gothenburg, Sweden.
    Jansson, Jonas
    The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
    Nåbo, Arne
    The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
    Simulation of Cut-In by Manually Driven Vehicles in Platooning Scenarios2017Ingår i: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Piscataway, NJ: IEEE, 2017, s. 1-6Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the near future, Cooperative Intelligent Transport System (C-ITS) applications are expected to be deployed. To support this, simulation is often used to design and evaluate the applications during the early development phases. Simulations of C-ITS scenarios often assume a fleet of homogeneous vehicles within the transportation system. In contrast, once C-ITS is deployed, the traffic scenarios will consist of a mixture of connected and non-connected vehicles, which, in addition, can be driven manually or automatically. Such mixed cases are rarely analysed, especially those where manually driven vehicles are involved. Therefore, this paper presents a C-ITS simulation framework, which incorporates a manually driven car through a driving simulator interacting with a traffic simulator, and a communication simulator, which together enable modelling and analysis of C-ITS applications and scenarios. Furthermore, example usages in the scenarios, where a manually driven vehicle cut-in to a platoon of Cooperative Adaptive Cruise Control (CACC) equipped vehicles are presented. © 2017 IEEE.

  • 4.
    Carpatorea, Iulian
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
    Slawomir, Nowaczyk
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
    Rögnvaldsson, Thorsteinn
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
    Elmer, Marcus
    Volvo Group Trucks Technology, Göteborg, Sweden.
    Lodin, Johan
    Volvo Group Trucks Technology, Göteborg, Sweden.
    Learning of Aggregate Features for Comparing Drivers Based on Naturalistic Data2016Ingår i: Proceedings: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) / [ed] Lisa O’Conner, Los Alamitos, CA: IEEE Computer Society, 2016, s. 1067-1072Konferensbidrag (Refereegranskat)
    Abstract [en]

    Fuel used by heavy duty trucks is a major cost for logistics companies, and therefore improvements in this area are highly desired. Many of the factors that influence fuel consumption, such as the road type, vehicle configuration or external environment, are difficult to influence. One of the most under-explored ways to lower the costs is training and incentivizing drivers. However, today it is difficult to measure driver performance in a comprehensive way outside of controlled, experimental setting.

    This paper proposes a machine learning methodology for quantifying and qualifying driver performance, with respect to fuel consumption, that is suitable for naturalistic driving situations. The approach is a knowledge-based feature extraction technique, constructing a normalizing fuel consumption value denoted Fuel under Predefined Conditions (FPC), which captures the effect of factors that are relevant but are not measured directly.

    The FPC, together with information available from truck sensors, is then compared against the actual fuel used on a given road segment, quantifying the effects associated with driver behavior or other variables of interest. We show that raw fuel consumption is a biased measure of driver performance, being heavily influenced by other factors such as high load or adversary weather conditions, and that using FPC leads to more accurate results. In this paper we also show evaluation the proposed method using large-scale, real-world, naturalistic database of heavy-duty vehicle operation.

  • 5.
    Chen, Lei
    et al.
    Viktoria Swedish ICT, Göteborg, Sweden.
    Habibovic, Azra
    Viktoria Swedish ICT, Göteborg, Sweden.
    Englund, Cristofer
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). Viktoria Swedish ICT, Göteborg, Sweden.
    Voronov, Alexey
    Viktoria Swedish ICT, Göteborg, Sweden.
    Walter, Anders Lindgren
    MTO Säkerhet, Swedish Road Administration, Stockholm Bypass Project, Stockholm, Sweden.
    Coordinating dangerous goods vehicles: C-ITS applications for safe road tunnels2015Ingår i: 2015 IEEE Intelligent Vehicles Symposium (IV), Piscataway, NJ: IEEE, 2015, s. 156-161, artikel-id 7225679Konferensbidrag (Refereegranskat)
    Abstract [en]

    Despite the existing regulation efforts and measures, vehicles with dangerous goods still pose significant risks on public safety, especially in road tunnels. Solutions based on cooperative intelligent transportation system (C-ITS) are promising measures, however, they have received limited attention. We propose C-ITS applications that coordinate dangerous goods vehicles to minimize the risk by maintaining safe distances between them in road tunnels. Different mechanisms, including global centralized coordination, global distributed coordination, and local coordination, are proposed and investigated. A preliminary simulation is performed and demonstrates their effectiveness. © 2015 IEEE.

  • 6.
    Eriksson, Carl-Johan
    et al.
    Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap.
    Erlingsson, Jonas
    Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap.
    FRP i brokonstruktion: -varför används FRP inte i Sverige2015Självständigt arbete på grundnivå (högskoleexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [sv]

    Broar är förenade med stora kostnader, dels för att bygga och dels för att underhålla ochreparera. FRP står för Fiber Reinforced Polymer är ett erkänt material för många andraanvändningsområden, exempelvis flyg och bilindustri. I Europa finns en mängd FRP-broar,men materialet har ännu inte introducerats i någon bro i Sverige.FRP är ett kompositmaterial som genom olika kombinationer av komponenter ochtillverkningsprocesser kan skräddarsys för den aktuella uppgiften i en konstruktion. FRPmaterialär starka, beständiga och har en låg vikt. Fördelar med FRP inom brokonstruktionär att det ger överbyggnaden en minskad egenvikt och därmed är ett lämpligt alternativ attprefabricera industriellt, då bland annat transport- och lyftbarhet gynnas samt att en högbeständighet ger minskat underhåll.Då ingen litteratur hanterar FRP i Brokonstruktion har de intervjuades åsikter varit mycketviktiga för arbetet. Litteraturstudien har legat till grund för en ökad förståelse för egenskaperutmärkande för olika typer av FRP. Intervjuer har utförts med personer som i dagslägetkommit i kontakt med materialet inom brokonstruktion. Detta har gjorts för att nå ett relevantresultat med möjlighet att kunna identifiera materialets för- respektive nackdelar samtanledningen till det låga användandet i Sverige.Rapporten visar att materialet har positiva egenskaper och är möjligt att använda vidkonstruktion av broar. Det saknas i dagsläget en specifik Eurokod som på ett enhetligt sättredovisar hur materialet ska hanteras. Med införandet av en specifik Eurokod och om en nykompetens arbetas fram inom branschen är vi övertygade om att FRP-material kommer attbli ett konkurrenskraftigt alternativ vid brokonstruktion.

  • 7.
    Kagevik, Tom
    et al.
    Högskolan i Halmstad, Sektionen för ekonomi och teknik (SET).
    Bohlin, Niklas
    Högskolan i Halmstad, Sektionen för ekonomi och teknik (SET).
    Materiallogistik vid innerstadsprojekt: En fallstudie av ett innerstadsprojekt i förbättringssyfte av materialflödet2014Självständigt arbete på grundnivå (högskoleexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [en]

    The construction industry is always looking for ways to make the work more efficient aswell as minimize the waste of money in general. At the same time the industry is showing alow awareness of logistics which has to increase in order to improve the industry in thesekind of questions. Projects located in the inner city have high demands on the logistic andthe handling of material due to the so often limited space for storages of the material. Dueto this the purpose of this report is true a case, study and analyze what kind of factors thereis to take into consideration during the materials way from the supplier to the workstationin a project located in the inner city. The data for the report was collected with the help of acase study, and in three different ways. Partly through observations, but mostly with thehelp of surveys and interviews with workers and managers. The case study was made atthe project “Barometern 8” located in the inner city of Halmstad, Sweden. The project hasfrom the very beginning struggled with the lack of areas to store material due of thecramped construction site. Problems that were observed were both related to thedeliveries from the distributers and the difficulties to access the construction site. Theconclusions that were made from this report are that the managers have to put demandson the distributers as well as communicate the conditions of the receptions. It´s alsoimportant to make sure that the work site is as easy as possible to be accessed bydistributers.

  • 8.
    Sprei, Frances
    et al.
    Chalmers University of Technology, Gothenburg, Sweden.
    Habibi, Shiva
    Chalmers University of Technology, Gothenburg, Sweden.
    Englund, Cristofer
    RISE Viktoria, Gothenburg, Sweden.
    Pettersson, Stefan
    RISE Viktoria, Gothenburg, Sweden.
    Voronov, Alexey
    RISE Viktoria, Gothenburg, Sweden.
    Wedlin, Johan
    RISE Viktoria, Gothenburg, Sweden.
    Free-floating car-sharing electrification and mode displacement: Travel time and usage patterns from 12 cities in Europe and the United States2019Ingår i: Transportation Research Part D: Transport and Environment, ISSN 1361-9209, E-ISSN 1879-2340, Vol. 71, nr SI, s. 127-140Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Free-floating car-sharing (FFCS) allows users to book a vehicle through their phone, use it and return it anywhere within a designated area in the city. FFCS has the potential to contribute to a transition to low-carbon mobility if the vehicles are electric, and if the usage does not displace active travel or public transport use. The aim of this paper is to study what travel time and usage patterns of the vehicles among the early adopters of the service reveal about these two issues.

    We base our analysis on a dataset containing rentals from 2014 to 2017, for 12 cities in Europe and the United States. For seven of these cities, we have collected travel times for equivalent trips with walking, biking, public transport and private car.

    FFCS services are mainly used for shorter trips with a median rental time of 27 min and actual driving time closer to 15 min. When comparing FFCS with other transport modes, we find that rental times are generally shorter than the equivalent walking time but longer than cycling. For public transport, the picture is mixed: for some trips there is no major time gain from taking FFCS, for others it could be up to 30 min.

    For electric FFCS vehicles rental time is shorter and the number of rentals per car and day are slightly fewer compared to conventional vehicles. Still, evidence from cities with an only electric fleet show that these services can be electrified and reach high levels of utilization. © 2018 The Authors

1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf