hh.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cardol, Pierre
    et al.
    Genetics of Microorganisms, University of Liège, Liège, Belgium.
    Figueroa, Francisco
    Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba. Campus de Rabanalles, Edif. Severo Ochoa, Córdoba, Spain.
    Remacle, Claire
    Genetics of Microorganisms, University of Liège, Liège, Belgium.
    Franzén, Lars-Gunnar
    Halmstad University, School of Business, Engineering and Science, Biological and Environmental Systems (BLESS), Plant Cell Biology: Energy transduction in plant cells.
    González-Halphen, Diego
    Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco-Universidad, Delegación Coyoacán, México D.F., Mexico.
    Oxidative Phosphorylation: Building blocks and related components2009In: The Chlamydomonas Sourcebook: Organellar and Metabolic Processes, Volume 2, Second Edition / [ed] Elizabeth H. Harris, David B. Stern & George B. Witman, Oxford: Academic Press, 2009, p. 469-502Chapter in book (Other academic)
    Abstract [en]

    This chapter summarizes the knowledge of the oxidative phosphorylation (OXPHOS) constituents of Chlamydomonas and of the components involved in their biogenesis and addresses alternate dehydrogenases and oxidases which are particular to photosynthetic organisms, and several other mitochondrial components related to OXPHOS. Reference to the components of Polytomella sp., a colorless alga closely related to Chlamydomonas is clearly made. The main complexes involved in electron transport seem to share a similar number of subunits, and many of the algal polypeptides have plant homologues. Some differences are apparent, such as the presence of a fragmented COX2 subunit, which seems to be unique to chlorophyte algae. OXPHOS is defined as an electron transfer chain driven by substrate oxidation that is coupled to the synthesis of ATP through an electrochemical transmembrane gradient. The characterization of Arabidopsis mitochondrial components through proteomic approaches has advanced significantly. As a unicellular organism, Chlamydomonas offers the unique opportunity to study organelle-organelle interactions, particularly between mitochondria and chloroplasts. It has become evident that crosstalk between these organelles takes place, mainly through intracellular metabolite pools. © 2009 Elsevier Inc. All rights reserved.

  • 2.
    Urrutia-Cordero, Pablo
    et al.
    Halmstad University, School of Business, Engineering and Science. Univ Autonoma Madrid, Dept Biol, Madrid 28049, Spain..
    Agha, Ramsy
    Univ Autonoma Madrid, Dept Biol, Madrid 28049, Spain..
    Cires, Samuel
    Univ Autonoma Madrid, Dept Biol, Madrid 28049, Spain..
    Angeles Lezcano, Maria
    Univ Autonoma Madrid, Dept Biol, Madrid 28049, Spain..
    Sanchez-Contreras, Maria
    Univ Autonoma Madrid, Dept Biol, Madrid 28049, Spain..
    Waara, Karl-Otto
    Halmstad University, School of Business, Engineering and Science, The Rydberg Laboratory for Applied Sciences (RLAS).
    Utkilen, Hans
    Norwegian Inst Publ Hlth, Dept Water Hyg, N-0403 Oslo, Norway..
    Quesada, Antonio
    Univ Autonoma Madrid, Dept Biol, Madrid 28049, Spain..
    Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii2013In: Aquatic Toxicology, ISSN 0166-445X, E-ISSN 1879-1514, Vol. 130, p. 9-17Article in journal (Refereed)
    Abstract [en]

    Grazing is a major regulating factor in cyanobacterial population dynamics and, subsequently, considerable effort has been spent on investigating the effects of cyanotoxins on major metazoan grazers. However, protozoan grazers such as free-living amoebae can also feed efficiently on cyanobacteria, while simultaneously posing a major threat for public health as parasites of humans and potential reservoirs of opportunistic pathogens. In this study, we conducted several experiments in which the freshwater amoeba Acanthamoeba castellanii was exposed to pure microcystin-LR (MC-LR) and six cyanobacterial strains, three MC-producing strains (MC-LR, MC-RR, MC-YR, MC-WR, [Dha7] MC-RR) and three strains containing other oligopeptides such as anabaenopeptins and cyanopeptolins. Although the exposure to high concentrations of pure MC-LR yielded no effects on amoeba, all MC-producing strains inflicted high mortality rates on amoeba populations, suggesting that toxic effects must be mediated through the ingestion of toxic cells. Interestingly, an anabaenopeptin-producing strain caused the greatest inhibition of amoeba growth, indicating that toxic bioactive compounds other than MCs are of great importance for amoebae grazers. Confocal scanning microscopy revealed different alterations in amoeba cytoskeleton integrity and as such, the observed declines in amoeba densities could have indeed been caused via a cascade of cellular events primarily triggered by oligopeptides with protein-phosphatase inhibition capabilities such as MCs or anabaenopeptins. Moreover, inducible-defense mechanisms such as the egestion of toxic, MC-producing cyanobacterial cells and the increase of resting stages (encystation) in amoebae co-cultivated with all cyanobacterial strains were observed in our experiments. Consequently, cyanobacterial strains showed different susceptibilities to amoeba grazing which were possibly influenced by the potentiality of their toxic secondary metabolites. Hence, this study shows the importance of cyanobacterial toxicity against amoeba grazing and, that cyanobacteria may contain a wide range of chemical compounds capable of negatively affect free-living, herbivorous amoebae. Moreover, this is of high importance for understanding the interactions and population dynamics of such organisms in aquatic ecosystems. (c) 2012 Elsevier B.V. All rights reserved.

  • 3.
    Vårdal, Hege
    et al.
    Department of Systematic Zoology, Evolutionary Biology Centre, Uppsala University, Sweden.
    Sahlén, Göran
    Halmstad University, School of Business and Engineering (SET), Biological and Environmental Systems (BLESS).
    Ronquist, Fredrik
    Department of Systematic Zoology, Evolutionary Biology Centre, Uppsala University, Sweden.
    Morphology and evolution of the cynipoid egg (Hymenoptera)2003In: Zoological Journal of the Linnean Society, ISSN 0024-4082, E-ISSN 1096-3642, Vol. 139, no 2, p. 247-260Article in journal (Refereed)
    Abstract [en]

    We describe gross egg morphology and provide the first data on eggshell ultrastructure in cynipoids (Hymenoptera) based on species representing three distinctly different life histories: internal parasitoids of endopterygote larvae, gall inducers and phytophagous inquilines (guests in galls). We then use existing phylogenetic hypotheses to identify putative changes in egg structure associated with evolutionary life-history transitions. We find four major structural changes associated with the shift from parasitoids laying their eggs inside a host larva to gall inducers laying their eggs in or on plants: (1) from a narrow and gradually tapering gross form to a distinct division into a stout body and a long and thin stalk; (2) from a thin to a thick eggshell; (3) from a flexible to a rigid endochorion; and (4) from crystal bundles with shifting orientation in the exochorion to layers of parallel crystal rods. By contrast, we find no major changes in egg structure associated with the transition from gall inducers to inquilines. Comparison between pre- and post-oviposition eggs of one gall inducer and one inquiline suggests that mechanical stress during the passage through the egg canal gives rise to numerous tiny stress fractures in the boundary separating the exo- and endochorion. In one of the gall inducers, Diplolepis rosae, that end of the egg, which is inserted into the plant, has a specialized and apparently porous shell that may permit chemical exchange between the embryo and the plant. Other structures that could facilitate chemical communication with the host plant through the eggshell were, however, not observed in the eggs of gall inhabitants.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf