Supporting Analytical Reasoning: A Study from the Automotive IndustryShow others and affiliations
2016 (English)In: Human Interface and the Management of Information: Applications and Services: 18th International Conference, HCI International 2016: Toronto, Canada, July 17-22, 2016. Proceedings, Part II / [ed] Sakae Yamamoto, Cham: Springer, 2016, Vol. 9735, p. 20-31Conference paper, Published paper (Refereed)
Abstract [en]
In the era of big data, it is imperative to assist the human analyst in the endeavor to find solutions to ill-defined problems, i.e. to “detect the expected and discover the unexpected” (Yi et al., 2008). To their aid, a plethora of analysis support systems is available to the analysts. However, these support systems often lack visual and interactive features, leaving the analysts with no opportunity to guide, influence and even understand the automatic reasoning performed and the data used. Yet, to be able to appropriately support the analysts in their sense-making process, we must look at this process more closely. In this paper, we present the results from interviews performed together with data analysts from the automotive industry where we have investigated how they handle the data, analyze it and make decisions based on the data, outlining directions for the development of analytical support systems within the area. © Springer International Publishing Switzerland 2016.
Place, publisher, year, edition, pages
Cham: Springer, 2016. Vol. 9735, p. 20-31
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 9735
Keywords [en]
Analytical reasoning, Sense-making, Visual analytics, Truck data analysis, Big data
National Category
Computer Systems Signal Processing
Identifiers
URN: urn:nbn:se:hh:diva-32048DOI: 10.1007/978-3-319-40397-7_3ISI: 000389467600003Scopus ID: 2-s2.0-84978877445ISBN: 978-3-319-40396-0 (print)ISBN: 978-3-319-40397-7 (print)OAI: oai:DiVA.org:hh-32048DiVA, id: diva2:971899
Conference
18th International Conference, HCI International 2016, Toronto, Canada, July 17-22, 2016
Projects
BIDAF
Funder
Knowledge Foundation, BIDAF 2014/322016-09-192016-09-192019-04-12Bibliographically approved