Open this publication in new window or tab >>2010 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
Digital learning material is associated with grand expectations among educational policy makers. Several attempts to introduce this new technology with the purpose of enhancing learning have been made in recent years. The schooling system has, however, been rather hesitant and not so ready to adopt this kind of teaching aid. The aim of this thesis is to probe into students‘ practical problems of understanding computerised science learning material involving animated sequences and educational text. For the purpose of this investigation an application describing the different events in the carbon cycle was developed. Two studies present analyses of students‘ reasoning and actions when working collaboratively with the task of making a written account of what is illustrated in the learning material. Both studies present examples of identified phenomena that were observed in more extensive empirical materials. The data is represented by video recordings of students‘ interaction with each other and the interface. Results from the studies reveal students‘ propensity for concentrating their attention to prominent characteristics of the animated display and to describe the animated models in correspondence to their resemblance of objects and occurrences in everyday life. In study II it is revealed how students, when constructing a written report of the described events, derive noun phrases from attentionally detected objects in the animation and from the educational text. In their effort to express themselves in colloquial language, when preparing their report, they deliberately select verbs that differ from the educational text. These courses of action together, contribute to give the report on what happens in the process a non-scientific explanation. It is concluded that students, lacking definite access to the relevant subject matter knowledge, consequently, cannot judge whether they have given an approvable account or not. Findings from the studies show that the school context with its explicit stipulations of assignments and implicit request for expressing oneself in your own words frames the learning and creates conditions for how the technology is used and understood. The results indicate that animated models of scientific concepts risk inferring misconceptions if students are left on their own with interpreting information from the learning material. Despite the detected problems of students‘ interpretations of the described phenomena, the results indicate that animated learning material can proffer an exploitable resource in science education. Such a prospect is the ability of animation to engage students in discussions of the subject and to make them recognise otherwise unobservable phenomena.
Place, publisher, year, edition, pages
Göteborg: Göteborgs universitet, 2010. p. 132
National Category
Educational Sciences
Identifiers
urn:nbn:se:hh:diva-30162 (URN)
Presentation
2010-04-09, Rum: Von Neuman, IT-universitetet, Lindholmsplatsen 1, Göteborg, 10:00
Supervisors
Note
The work reported here has been supported by the Linnaeus Centre for Research on Learning, Interaction, and Mediated Communication in Contemporary Society (LinCS).
2016-01-152016-01-132016-01-15Bibliographically approved