hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Vehicle-to-vehicle communication in C-ACC/platooning scenarios
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).ORCID iD: 0000-0003-4894-4134
Hitachi Europe SAS, Sophia-Antipolis, France.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).ORCID iD: 0000-0003-1460-2988
2015 (English)In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 53, no 8, 192-197 p., 7180527Article in journal (Refereed) Published
Abstract [en]

Cooperative adaptive cruise control (C-ACC) and platooning are two emerging automotive intelligent transportation systems (ITS) applications. In this tutorial article we explain their principles, describe related ongoing standardization activities, and conduct performance evaluation of the underlying communication technology. © Copyright 2015 IEEE

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE Press, 2015. Vol. 53, no 8, 192-197 p., 7180527
Keyword [en]
Computer aided manufacturing, Intelligent vehicles, Kinematics, Roads, Telecommunication standards
National Category
Communication Systems Telecommunications
Identifiers
URN: urn:nbn:se:hh:diva-29906DOI: 10.1109/MCOM.2015.7180527ISI: 000359262600024Scopus ID: 2-s2.0-84939235846OAI: oai:DiVA.org:hh-29906DiVA: diva2:877437
Funder
Knowledge Foundation
Note

This study is supported by NFITS— the National ITS Postgraduate School (Sweden), and is a part of the “ACDC: Autonomous Cooperative Driving: Communications Issues” project (2014–2016) funded by the Knowledge Foundation (Sweden) in cooperation with Volvo GTT, Volvo Cars, Scania, Kapsch TrafficCom, and Qamcom Research & Technology.

Available from: 2015-12-07 Created: 2015-12-07 Last updated: 2017-05-15Bibliographically approved
In thesis
1. Performance evaluation of C-ACC/platooning under ITS-G5 communications
Open this publication in new window or tab >>Performance evaluation of C-ACC/platooning under ITS-G5 communications
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Intelligent Transport Systems (ITS) are aiming to provide innovative services related to different modes of transport and traffic management, and enable various users to be better informed and make safer, more coordinated and smarter use of transport networks. Cooperative-ITS (C-ITS) support connectivity between vehicles, vehicles and roadside infrastructure, traffic signals as well as with other road users. In order to enable vehicular communications European Telecommunication Standards Institute (ETSI) delivered ITS-G5 -- a of set of C-ITS standards. Considering the goals of C-ITS, inter-vehicle communications should be reliable and efficient.

In this thesis we study the performance, efficiency, and dependability of ITS-G5 communications for Cooperative adaptive cruise control (C-ACC) and platooning C-ITS applications. We provide an overview of currently available and ongoing standardization targeting communications in C-ACC/platooning. We study the performance of ITS-G5 beaconing in a C-ACC/platooning scenario, where we show that its performance may deteriorate when implemented in cooperative driving applications due to the kinematic-dependent design of the message triggering mechanism. We explain in detail the cause of this phenomenon and test it for a wide range of parameters. Also, we study the influence of different available ITS-G5 legitimate setups on the C-ACC/platooning fuel efficiency and demonstrate that proper communication setup may enhance fuel savings. This thesis also proposes a jamming denial-of-service attack detection algorithm for platooning. The main advantage of our detector is its short learning phase that not exceed a second and low detection delay of a few hundreds of milliseconds. Under some assumptions, the proposed algorithm demonstrates the ability to detect certain types of attacks with average probability above 0.9.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2016. 64 p.
Series
Halmstad University Dissertations, 26
Keyword
VANET, ITS-G5, ETSI, Platooning, C-ACC, DoS, jamming, DCC, CAM, Cooperative Awareness
National Category
Communication Systems Telecommunications
Identifiers
urn:nbn:se:hh:diva-32320 (URN)978-91-87045-55-4 (ISBN)978-91-87045-54-7 (ISBN)
Presentation
2016-12-06, Wigforssalen, Visionen, Kristian IV:s väg 3, Halmstad, 13:15 (English)
Opponent
Supervisors
Projects
ACDC
Available from: 2016-11-08 Created: 2016-10-26 Last updated: 2017-05-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Vinel, AlexeyLyamin, Nikita
By organisation
Centre for Research on Embedded Systems (CERES)
In the same journal
IEEE Communications Magazine
Communication SystemsTelecommunications

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 288 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf