hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of Self-Organized Approach for Predicting Compressor Faults in a City Bus Fleet
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.ORCID iD: 0000-0002-3034-6630
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Intelligent Systems´ laboratory.ORCID iD: 0000-0002-7796-5201
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.ORCID iD: 0000-0001-5163-2997
2015 (English)In: Procedia Computer Science, ISSN 1877-0509, E-ISSN 1877-0509, Vol. 53, 447-456 p.Article in journal (Refereed) Published
Abstract [en]

Managing the maintenance of a commercial vehicle fleet is an attractive application domain of ubiquitous knowledge discovery. Cost effective methods for predictive maintenance are progressively demanded in the automotive industry. The traditional diagnostic paradigm that requires human experts to define models is not scalable to today's vehicles with hundreds of computing units and thousands of control and sensor signals streaming through the on-board controller area network. A more autonomous approach must be developed. In this paper we evaluate the performance of the COSMO approach for automatic detection of air pressure related faults on a fleet of city buses. The method is both generic and robust. Histograms of a single pressure signal are collected and compared across the fleet and deviations are matched against workshop maintenance and repair records. It is shown that the method can detect several of the cases when compressors fail on the road, well before the failure. The work is based on data from a three year long field study involving 19 buses operating in and around a city on the west coast of Sweden. © The Authors. Published by Elsevier B.V.

Place, publisher, year, edition, pages
Amsterdam: Elsevier, 2015. Vol. 53, 447-456 p.
Keyword [en]
Vehicle diagnostics, predictive maintenance, fault detection, self-organizing systems
National Category
Signal Processing Information Systems
Identifiers
URN: urn:nbn:se:hh:diva-29240DOI: 10.1016/j.procs.2015.07.322ISI: 000360311000051Scopus ID: 2-s2.0-84939156791OAI: oai:DiVA.org:hh-29240DiVA: diva2:847249
Conference
INNS Conference on Big Data, San Francisco, CA, USA, 8-10 August, 2015
Projects
In4Uptime
Funder
VINNOVA
Available from: 2015-08-19 Created: 2015-08-19 Last updated: 2016-11-28Bibliographically approved
In thesis
1. A Self-Organized Fault Detection Method for Vehicle Fleets
Open this publication in new window or tab >>A Self-Organized Fault Detection Method for Vehicle Fleets
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

A fleet of commercial heavy-duty vehicles is a very interesting application arena for fault detection and predictive maintenance. With a highly digitized electronic system and hundreds of sensors mounted on-board a modern bus, a huge amount of data is generated from daily operations.

This thesis and appended papers present a study of an autonomous framework for fault detection, using the data gathered from the regular operation of vehicles. We employed an unsupervised deviation detection method, called Consensus Self-Organising Models (COSMO), which is based on the concept of ‘wisdom of the crowd’. It assumes that the majority of the group is ‘healthy’; by comparing individual units within the group, deviations from the majority can be considered as potentially ‘faulty’. Information regarding detected anomalies can be utilized to prevent unplanned stops.

This thesis demonstrates how knowledge useful for detecting faults and predicting failures can be autonomously generated based on the COSMO method, using different generic data representations. The case study in this work focuses on vehicle air system problems of a commercial fleet of city buses. We propose an approach to evaluate the COSMO method and show that it is capable of detecting various faults and indicates upcoming air compressor failures. A comparison of the proposed method with an expert knowledge based system shows that both methods perform equally well. The thesis also analyses the usage and potential benefits of using the Echo State Network as a generic data representation for the COSMO method and demonstrates the capability of Echo State Network to capture interesting characteristics in detecting different types of faults.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2016. 116 p.
Series
Halmstad University Dissertations, 27
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hh:diva-32489 (URN)978-91-87045-57-8 (ISBN)978-91-87045-56-1 (ISBN)
Presentation
2016-12-16, Halda, Kristian IV:s väg 3, 301 18 Halmstad, Halmstad, 10:00 (English)
Opponent
Supervisors
Projects
In4Uptime
Funder
VINNOVA
Available from: 2016-11-28 Created: 2016-11-25 Last updated: 2016-11-28Bibliographically approved

Open Access in DiVA

fulltext(5248 kB)111 downloads
File information
File name FULLTEXT01.pdfFile size 5248 kBChecksum SHA-512
1a3a9cb58b84ab1f9f09e2b1ab879f1207b2bdab0b10371986c10a6e719f3b87cb668e88fb0a7e10d2d1021a1e7bbc43476e2a83748b0811454885cc456571d0
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Fan, YuantaoNowaczyk, SławomirRögnvaldsson, Thorsteinn
By organisation
CAISR - Center for Applied Intelligent Systems ResearchIntelligent Systems´ laboratory
In the same journal
Procedia Computer Science
Signal ProcessingInformation Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 111 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 292 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf