hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dimensions of Cooperative Driving, ITS and Automation
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES). The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), Centre for Research on Embedded Systems (CERES).
The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research. Viktoria Swedish ICT, Gothenburg, Sweden.ORCID iD: 0000-0002-1043-8773
2015 (English)In: 2015 IEEE Intelligent Vehicles Symposium (IV), Piscataway, NJ: IEEE Press, 2015, 144-149 p.Conference paper, Published paper (Refereed)
Abstract [en]

Wireless technology supporting vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communication, allow vehicles and infrastructures to exchange information, and cooperate. Cooperation among the actors in an intelligent transport system (ITS) can introduce several benefits, for instance, increase safety, comfort, efficiency. Automation has also evolved in vehicle control and active safety functions. Combining cooperation and automation would enable more advanced functions such as automated highway merge and negotiating right-of-way in a cooperative intersection. However, the combination have influences on the structure of the overall transport systems as well as on its behaviour. In order to provide a common understanding of such systems, this paper presents an analysis of cooperative ITS (C-ITS) with regard to dimensions of cooperation. It also presents possible influence on driving behaviour and challenges in deployment and automation of C-ITS.

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE Press, 2015. 144-149 p.
National Category
Embedded Systems
Identifiers
URN: urn:nbn:se:hh:diva-29191DOI: 10.1109/IVS.2015.7225677ISI: 000380565800025Scopus ID: 2-s2.0-84951010000ISBN: 978-1-4673-7266-4 OAI: oai:DiVA.org:hh-29191DiVA: diva2:846110
Conference
2015 IEEE Intelligent Vehicles Symposium, Seoul, South Korea, June 28 - July 1, 2015
Funder
Knowledge FoundationVINNOVA
Available from: 2015-08-14 Created: 2015-08-14 Last updated: 2016-12-02Bibliographically approved
In thesis
1. Modelling and Simulation for Evaluation of Cooperative Intelligent Transport System Functions
Open this publication in new window or tab >>Modelling and Simulation for Evaluation of Cooperative Intelligent Transport System Functions
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Future vehicles are expected to be equipped with wireless communication tech- nology, that enables them to be “connected” to each others and road infras- tructures. Complementing current autonomous vehicles and automated driving systems, the wireless communication allows the vehicles to interact, cooperate, and be aware of its surroundings beyond their own sensors’ range. Such sys- tems are often referred to as Cooperative Intelligent Transport Systems (C-ITS), which aims to provide extra safety, efficiency, and sustainability to transporta- tion systems. Several C-ITS applications are under development and will require thorough testing and evaluation before their deployment in the real-world. C- ITS depend on several sub-systems, which increase their complexity, and makes them difficult to evaluate.

Simulations are often used to evaluate many different automotive appli- cations, including C-ITS. Although they have been used extensively, simulation tools dedicated to determine all aspects of C-ITS are rare, especially human fac- tors aspects, which are often ignored. The majority of the simulation tools for C-ITS rely heavily on different combinations of network and traffic simulators. The human factors issues have been covered in only a few C-ITS simulation tools, that involve a driving simulator. Therefore, in this thesis, a C-ITS simu- lation framework that combines driving, network, and traffic simulators is pre- sented. The simulation framework is able to evaluate C-ITS applications from three perspectives; a) human driver; b) wireless communication; and c) traffic systems.

Cooperative Adaptive Cruise Control (CACC) and its applications are cho- sen as the first set of C-ITS functions to be evaluated. Example scenarios from CACC and platoon merging applications are presented, and used as test cases for the simulation framework, as well as to elaborate potential usages of it. Moreover, approaches, results, and challenges from composing the simulation framework are presented and discussed. The results shows the usefulness of the proposed simulation framework.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2016. 35 p.
Series
Halmstad University Dissertations, 24
National Category
Computer Systems Other Electrical Engineering, Electronic Engineering, Information Engineering Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:hh:diva-31987 (URN)978-91-87045-51-6 (ISBN)978-91-87045-50-9 (ISBN)
External cooperation:
Presentation
2016-09-27, Wigforssalen, Halmstad, 13:00 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
Available from: 2016-09-13 Created: 2016-09-12 Last updated: 2016-09-13Bibliographically approved

Open Access in DiVA

fulltext(480 kB)228 downloads
File information
File name FULLTEXT01.pdfFile size 480 kBChecksum SHA-512
3c9009351193c820fc87b9b32f7308a26f6f1fbeac1f0c04b3689121f099eff3d656ed4cb9ea328b1a0347371fa48c61d83853e9e565e9d15e74d75d30f131e5
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Englund, Cristofer

Search in DiVA

By author/editor
Aramrattana, MaytheewatLarsson, TonyEnglund, Cristofer
By organisation
Centre for Research on Embedded Systems (CERES)CAISR - Center for Applied Intelligent Systems Research
Embedded Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 228 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 478 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf