1 We investigated morphological responses of the submerged macrophyte Myriophyllum spicatum L. to water depth and wave exposure when grown in the same substrate at two sites in two eutrophic lakes. Periphyton production was 4-8 times higher at sheltered than at wave-exposed sites and its influence was further investigated in a glasshouse experiment. Morphological responses in both experiments were compared by allometric analyses, with shoot weight as covariate. 2 In the field study, plants shoots exhibited similar responses (increased plant height and branch length, and decreased branch number) to sheltered conditions as to deep water. The partitioning between above- and below-ground biomass however, differed, with below-ground decreasing with an increasing water depth, but increasing or remaining unaffected at sheltered compared with exposed conditions. 3 In the glasshouse experiment, plant responses to water depth were similar to those in the field study. Furthermore, plant height increased when plants were overgrown with periphyton. 4 High production of periphytic algae at sheltered sites appears to cause light limitation of macrophytes. However, other factors such as nutrient uptake also appears to determine morphological responses. At sheltered sites, where leaf nutrient uptake is reduced by abundant periphyton and thick boundary layers, plants allocate more biomass to roots. At deep and wave-exposed sites, the absence of periphyton allows plants to take up nutrients through their leaves and allocation of biomass to shoots increases photosynthesis. 5 Overall, relative allocation to shoot and root biomass appears to be primarily controlled by nutrient availability, whereas allocation of available shoot biomass to particular structures is controlled by light availability.