hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling of a Large Structured Environment: With a Repetitive Canonical Geometric-Semantic Model
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.ORCID iD: 0000-0003-3498-0783
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR - Center for Applied Intelligent Systems Research.
2014 (English)In: Advances in Autonomous Robotics Systems: 15th Annual Conference, TAROS 2014, Birmingham, UK, September 1-3, 2014. Proceedings / [ed] Michael Mistry, Aleš Leonardis, Mark Witkowski & Chris Melhuish, Heidelberg: Springer, 2014, Vol. 8717, 1-12 p.Conference paper, (Refereed)
Abstract [en]

AIMS project attempts to link the logistic requirements of an intelligent warehouse and state of the art core technologies of automation, by providing an awareness of the environment to the autonomous systems and vice versa. In this work we investigate a solution for modeling the infrastructure of a structured environment such as warehouses, by the means of a vision sensor. The model is based on the expected pattern of the infrastructure, generated from and matched to the map. Generation of the model is based on a set of tools such as closed-form Hough transform, DBSCAN clustering algorithm, Fourier transform and optimization techniques. The performance evaluation of the proposed method is accompanied with a real world experiment. © 2014 Springer International Publishing.

Place, publisher, year, edition, pages
Heidelberg: Springer, 2014. Vol. 8717, 1-12 p.
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 8717
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:hh:diva-26316DOI: 10.1007/978-3-319-10401-0_1Scopus ID: 2-s2.0-84906729072ISBN: 978-3-319-10400-3 (print)ISBN: 978-3-319-10401-0 (electronic)OAI: oai:DiVA.org:hh-26316DiVA: diva2:741585
Conference
15th Annual Conference, TAROS (Towards Autonomous Robotic Systems) 2014, Birmingham, United Kingdom, September 1-3, 2014
Projects
AIMS
Funder
Knowledge Foundation
Note

This work as a part of AIMS project, is supported by the Swedish Knowledge Foundation and industry partners Kollmorgen, Optronic, and Toyota Material Handling Europe.

Available from: 2014-08-28 Created: 2014-08-28 Last updated: 2017-03-22Bibliographically approved
In thesis
1. Semantic Mapping in Warehouses
Open this publication in new window or tab >>Semantic Mapping in Warehouses
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis and appended papers present the process of tacking the problem of environment modeling for autonomous agent. More specifically, the focus of the work has been semantic mapping of warehouses. A semantic map for such purpose is expected to be layout-like and support semantics of both open spaces and infrastructure of the environment. The representation of the semantic map is required to be understandable by all involved agents (humans, AGVs and WMS.) And the process of semantic mapping is desired to lean toward full-autonomy, with minimum input requirement from human user. To that end, we studied the problem of semantic annotation over two kinds of spatial map from different modalities. We identified properties, structure, and challenges of the problem. And we have developed representations and accompanied methods, while meeting the set criteria. The overall objective of the work is “to develop and construct a layer of abstraction (models and/or decomposition) for structuring and facilitate access to salient information in the sensory data. This layer of abstraction connects high level concepts to low-level sensory pattern.” Relying on modeling and decomposition of sensory data, we present our work on abstract representation for two modalities (laser scanner and camera) in three appended papers. Feasibility and the performance of the proposed methods are evaluated over data from real warehouse. The thesis conclude with summarizing the presented technical details, and drawing the outline for future work.

Place, publisher, year, edition, pages
Halmstad University: Halmstad University Press, 2016. 88 p.
Series
Halmstad University Dissertations, 23
Keyword
Automation, Robotics, Mapping, Semantic Maps, Warehouse Automation
National Category
Robotics Signal Processing
Identifiers
urn:nbn:se:hh:diva-32170 (URN)978-91-87045-48-6 (ISBN)978-91-87045-49-3 (ISBN)
Presentation
2016-09-23, Wigforssalen, Kristian IV:s väg 3, Halmstad, Sweden, 10:15 (English)
Opponent
Supervisors
Projects
Automatic Inventory and Mapping of Stock (AIMS)
Funder
Knowledge Foundation
Available from: 2016-10-13 Created: 2016-10-08 Last updated: 2017-05-16Bibliographically approved

Open Access in DiVA

fulltext(2758 kB)188 downloads
File information
File name FULLTEXT01.pdfFile size 2758 kBChecksum SHA-512
58aaaa5b37bdca610244e83a5c019911ec57b630b95797868caf9456e832954f60c1bdf224ed705aace6a393100407a2b0f09fc7175c6b9b04fcf43719c676af
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gholami Shahbandi, SaeedÅstrand, Björn
By organisation
CAISR - Center for Applied Intelligent Systems Research
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 188 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 3527 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf