hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetoresistance in Mn ion-implanted GaAs:Zn nanowires
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems Research (EIS), MPE-lab. Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.
Solid State Physics/The Nanometer Structure Consortium, Lund University, Lund, Sweden.ORCID iD: 0000-0001-5774-5116
Institute for Solid State Physics, Jena University, Jena, Germany.
Show others and affiliations
2014 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 104, no 15, 153112Article in journal (Refereed) Published
Abstract [en]

We have investigated the magnetoresistance (MR) in a series of Zn doped (p-type) GaAs nanowires implanted with different Mn concentrations. The nanowires with the lowest Mn concentration (~0.0001%) exhibit a low resistance of a few kΩ at 300K and a 4% positive MR at 1.6K, which can be well described by invoking a spin-split subband model. In contrast, nanowires with the highest Mn concentration (4%) display a large resistance of several MΩ at 300K and a large negative MR of 85% at 1.6K. The large negative MR is interpreted in terms of spin-dependent hopping in a complex magnetic nanowire landscape of magnetic polarons, separated by intermediate regions of Mn impurity spins. Sweeping the magnetic field back and forth for the 4% sample reveals a hysteresis that indicates the presence of a weak ferromagnetic phase. We propose co-doping with Zn to be a promising way to reach the goal of realizing ferromagnetic Ga1-xMnxAs nanowires for future nanospintronics. © 2014 AIP Publishing LLC.

Place, publisher, year, edition, pages
New York: American Institute of Physics (AIP), 2014. Vol. 104, no 15, 153112
Keyword [en]
Nanospintronics, Ion-implantation, GaMnAs, Nanowires, hopping transport, Negative magnetoresistance
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:hh:diva-25126DOI: 10.1063/1.4870423ISI: 000335145200060Scopus ID: 2-s2.0-84899622402OAI: oai:DiVA.org:hh-25126DiVA: diva2:713170
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationSwedish Foundation for Strategic Research
Note

W. Paschoal, Jr. and S. Kumar contributed equally to this work and are co-first authors. The authors acknowledge financial support from nmC@LU, the Swedish Research Council (VR), the Knut and Alice Wallenberg Foundation, the Swedish National Board for Industrial, Technological Development, the Swedish Foundation for Strategic Research, the Nordforsk research network “Nanospintronics; theory and simulations,” and the German Research Society (DFG) Project Ro1198/14. One of the authors, W.P., Jr., gratefully acknowledges financial support from the Pará Education Secretary (SEDUC) and the Pará Government School (EGPA).

Available from: 2014-04-22 Created: 2014-04-22 Last updated: 2016-01-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Paschoal Jr., WaldomiroKumar, SandeepJacobsson, DanielJain, VishalPertsova, AnnaDick, Kimberly A.Samuelson, LarsPettersson, Håkan
By organisation
MPE-lab
In the same journal
Applied Physics Letters
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 140 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf