The quality of the cylinder liner surface is of great importance due to its impact on the fuel/oil consumption and emissions of the internal combustion engine. A good liner function depends on the size and distribution of the deep honing grooves and the amount of the cold work material (Blechmantel) left inside the grooves after finishing. A fast evaluation of these features requires optical three-dimensional measurements with a large area and good resolution, but many interferometers used today have limited resolution when measuring larger areas. To find out how the measurement size and resolution would affect the quantification and the variation of the parameters, two objectives, 2.5 × and 10 × , were used for measuring a cylinder liner from a truck engine. The Blechmantel was of special interest as it first comes into contact with piston/rings, detaches as particles and wears the running surfaces. The 2.5 × objective showed more robust assessment than the 10 × one, manifested by a lower coefficient of variation for the parameters describing the features: Blechmantel, groove width and height, groove balance and number of grooves. This means that fewer measurements are required if a 2.5 × objective is used in production and hence the time and cost of the liner would be decreased. © 2014 IOP Publishing Ltd.