Surface topography has long been identified as a crucial parameter for successful osseointegration of oral implants. A paradigm shift occurred during the 1990s, when the huge majority of companies abandoned turned, minimally rough surfaces in favour of moderately rough surfaces. Several machining techniques have been used to increase the roughness from what was achieved with a turning process. An early obstacle was topographical description of surfaces; scanning electron microscopy (SEM) was often used as a description of the surfaces, but this technique provided no quantitative data. Thus it was, in many cases, difficult to know how one surface differed from another. Optical methods were developed during the late 1980s, and then it was possible to evaluate the threaded part of the implants relevant for osseointegration. Currently, general guidelines exist for how to measure implants surfaces, and a set of quantitative parameters have, after extensive research, been recommended for the topographical evaluation. However, the implant surfaces of today are often geometrically complex and include nanometer particles, porosity, coatings and deterministic patterning; thus the demands for new measuring techniques and evaluation methods increase. © 2012 by Nova Science Publishers, Inc. All rights reserved.