This paper describes the design of an optimal-control-based active safety framework that performs trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. The vehicle navigation problem is formulated as a constrained optimal control problem with constraints bounding a navigable region of the road surface. A model predictive controller iteratively plans an optimal vehicle trajectory through the constrained corridor. Metrics from this "best-case" scenario establish the minimum threat posed to the vehicle given its current state. Based on this threat assessment, the level of controller intervention required to prevent departure from the navigable corridor is calculated and driver/controller inputs are scaled accordingly. This approach minimizes controller intervention while ensuring that the vehicle does not depart from a navigable corridor of travel. It also allows for multiple actuation modes, diverse trajectory-planning objectives, and varying levels of autonomy. Experimental results are presented here to demonstrate the framework's semi-autonomous performance in hazard avoidance scenarios.