hh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Frictional properties of different austenitic stainless sheet surface topographies: Industrial trials at Alfa Laval
Halmstad University, School of Business and Engineering (SET), Mechanical Engineering and Industrial Design (MTEK).
2006 (English)Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2006.
National Category
Engineering and Technology Materials Engineering
Identifiers
URN: urn:nbn:se:hh:diva-20300OAI: oai:DiVA.org:hh-20300DiVA, id: diva2:582782
Conference
IDDRG 2006, Porto, Portugal, 19-21 June 2006
Available from: 2013-01-07 Created: 2013-01-07 Last updated: 2018-03-22Bibliographically approved
In thesis
1. Tribology of stamping: the influence of designed steel sheet surface topography on friction
Open this publication in new window or tab >>Tribology of stamping: the influence of designed steel sheet surface topography on friction
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Tribology is the science of friction, wear, and lubrication; the interaction of surfaces in relative motion. The tribological conditions in sheet metal forming influences the flow of material in forming operations, the strain distributions of sheet material, extent of wear, and thereby the quality of products. The purpose of the thesis is to increase the knowledge of why and how sheet surface topography influence the frictional response in stamping, to characterise the geometrical properties, and make results applicable for industry. The frictional response of different surface topographies have been measured in a Bending Under Tension test under mixed lubricated conditions. The studied materials have been stainless steel sheets and uncoated and coated carbon steel sheets. The results did show the influence of roughness, skewness, and anisotropy of surface topography. The findings could be explained by the theory of pad bearings. A new functional 3D parameter (Sq>0) was developed for pressing performance that is sensitive to the effects of roughness and skewness. The texture-aspect ratio parameter (Str) was found to be correlated to the anisotropical behaviour of the frictional response. The results are very tangible and mean increased control of stamping operations. An initial step was taken to introduce more advanced tribological models in FE simulation of sheet metal forming operations. The aim is to decrease the trial-and-error time in the design process of dies and tools. A friction model considering surface topography (Sq>0), sliding velocity, lubricant viscosity, and apparent pressure, was successfully implemented. Simulations of a part were evaluated with real stamping tryouts. The results did show the potential of improving the precision in forming simulations with more advanced tribological models. Finally, theory and characterisation methods of active micro-oil pockets in the contact zone of tool and sheet were investigated. The real contact area was shown to be the critical feature to determine. Therefore, two topographical methods and one microscope-imaging processing technique were studied, but no method was found to be viable. However, the experimental results did not confirm the importance of microoil pockets in mixed lubricated regime.

Place, publisher, year, edition, pages
Göteborg: Chalmers tekniska högskola, 2006. p. 72
Series
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie, ISSN 0346-718X ; 2526
Keyword
steel sheet, tribology, surface topography
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:hh:diva-2010 (URN)2082/2405 (Local ID)91-7291-844-6 (ISBN)2082/2405 (Archive number)2082/2405 (OAI)
Public defence
(English)
Available from: 2008-10-06 Created: 2008-10-06 Last updated: 2018-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Wiklund, Daniel

Search in DiVA

By author/editor
Wiklund, Daniel
By organisation
Mechanical Engineering and Industrial Design (MTEK)
Engineering and TechnologyMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf